			APPENDIX E	
C	riteria Air Pollutan	ıt Descriptions aı	APPENDIX E y Modeling Results	-
C	riteria Air Pollutan	t Descriptions ar		-
C	riteria Air Pollutan	t Descriptions ar		-
C	riteria Air Pollutan	t Descriptions a		-
C	riteria Air Pollutan	t Descriptions a		-
C	riteria Air Pollutan	t Descriptions a		-

CRITERIA AIR POLLUTANTS DESCRIPTION

Concentrations of the following air pollutants: ozone, respirable and fine particulate matter (PM_{10} and $PM_{2.5}$), carbon monoxide (PM_{10}), nitrogen dioxide (PM_{10}), sulfur dioxide (PM_{10}), and lead are used as indicators of ambient air quality conditions. Because these are the most prevalent air pollutants known to be deleterious to human health and extensive health-effects criteria documents are available, they are commonly referred to as "criteria air pollutants."

A brief description of each criteria air pollutant including source types, health effects, and future trends is provided below.

OZONE

Ozone is a photochemical oxidant, a substance whose oxygen combines chemically with another substance in the presence of sunlight, and the primary component of smog. Ozone is not directly emitted into the air, but is formed through complex chemical reactions between precursor emissions of ROG and NO_X in the presence of sunlight. ROG are volatile organic compounds that are photochemically reactive. ROG emissions result primarily from incomplete combustion and the evaporation of chemical solvents and fuels. NO_X are a group of gaseous compounds of nitrogen and oxygen that results from the combustion of fuels.

Ozone located in the upper atmosphere (stratosphere) acts in a beneficial manner by shielding the earth from harmful ultraviolet radiation that is emitted by the sun. However, ozone located in the lower atmosphere (troposphere) is a major health and environmental concern. Meteorology and terrain play a major role in ozone formation. Generally, low wind speeds or stagnant air coupled with warm temperatures and clear skies provide the optimum conditions for formation. As a result, summer is generally the peak ozone season. Because of the reaction time involved, peak ozone concentrations often occur far downwind of the precursor emissions. Therefore, ozone is a regional pollutant that often affects large areas. In general, ozone concentrations over or near urban and rural areas reflect an interplay of emissions of ozone precursors, transport, meteorology, and atmospheric chemistry (Godish 1991).

The adverse health effects associated with exposure to ozone pertain primarily to the respiratory system. Scientific evidence indicates that ambient levels of ozone affect not only sensitive receptors, such as asthmatics and children, but healthy adults as well. Exposure to ambient levels of ozone ranging from 0.10 to 0.40 parts per million (ppm) for 1 to 2 hours has been found to significantly alter lung functions by increasing respiratory rates and pulmonary resistance, decreasing tidal volumes, and impairing respiratory mechanics. Ambient levels of ozone above 0.12 ppm are linked to symptomatic responses that include such symptoms as throat dryness, chest tightness, headache, and nausea. In addition to the above adverse health effects, evidence also exists relating ozone exposure to an increase in the permeability of respiratory epithelia; such increased permeability leads to an

increase in responsiveness of the respiratory system to challenges, and interference or inhibition of the immune system's ability to defend against infection (Godish 1991).

PARTICULATE MATTER

Respirable particulate matter with an aerodynamic diameter of 10 micrometers or less is referred to as PM₁₀. PM₁₀ consists of particulate matter emitted directly into the air, such as fugitive dust, soot, and smoke from mobile and stationary sources, construction operations, fires and natural windblown dust, and particulate matter formed in the atmosphere by condensation and/or transformation of SO₂ and ROG (U.S. Environmental Protection Agency [EPA] 2006). Fine particulate matter (PM_{2.5}) includes a subgroup of smaller particles that have an aerodynamic diameter of 2.5 micrometers or less (California Air Resources Board 2006a).

The adverse health effects associated with PM_{10} depend on the specific composition of the particulate matter. For example, health effects may be associated with metals, polycyclic aromatic hydrocarbons (PAH), and other toxic substances adsorbed onto fine particulate matter, which is referred to as the piggybacking effect, or with fine dust particles of silica or asbestos. Generally, adverse health effects associated with PM_{10} may result from both short-term and long-term exposure to elevated concentrations and may include breathing and respiratory symptoms, aggravation of existing respiratory and cardiovascular diseases, alterations to the immune system, carcinogenesis, and premature death (EPA 2006). $PM_{2.5}$ poses an increased health risk because the particles can deposit deep in the lungs and may contain substances that are particularly harmful to human health.

CARBON MONOXIDE

Carbon monoxide (CO) is a colorless, odorless, and poisonous gas produced by incomplete burning of carbon in fuels, primarily from mobile (transportation) sources. Seventy-seven percent of the nationwide CO emissions are from mobile sources. The other 23% consists of CO emissions from wood-burning stoves, incinerators, and industrial sources.

CO enters the bloodstream through the lungs by combining with hemoglobin, which normally supplies oxygen to the cells. However, CO combines with hemoglobin much more readily than oxygen does, resulting in a drastic reduction in the amount of oxygen available to the cells. Adverse health effects associated with exposure to CO concentrations include such symptoms as dizziness, headaches, and fatigue. CO exposure is especially harmful to individuals who suffer from cardiovascular and respiratory diseases (EPA 2006).

The highest concentrations are generally associated with cold stagnant weather conditions that occur during the winter. In contrast to ozone, which tends to be a regional pollutant, CO problems tend to be localized.

NITROGEN DIOXIDE

Nitrogen dioxide (NO₂) is a brownish, highly reactive gas that is present in all urban environments. The major human-made sources of NO₂ are combustion devices, such as boilers, gas turbines, and mobile and stationary reciprocating internal combustion engines. Combustion devices emit primarily nitric oxide (NO), which reacts through oxidation in the atmosphere to form NO₂ (EPA 2006). The combined emissions of NO and NO₂ are referred to as NO_X, which are reported as equivalent NO₂. Because NO₂is formed and depleted by reactions associated with photochemical smog (ozone), the NO₂ concentration in a particular geographical area may not be representative of the local NO_X emission sources.

Inhalation is the most common route of exposure to NO₂. Because NO₂ has relatively low solubility in water, the principal site of toxicity is in the lower respiratory tract. The severity of the adverse health effects depends primarily on the concentration inhaled rather than the duration of exposure. An individual may experience a variety of acute symptoms, including coughing, difficulty with breathing, vomiting, headache, and eye irritation during or shortly after exposure. After a period of approximately 4 to 12 hours, an exposed individual may experience chemical pneumonitis or pulmonary edema with breathing abnormalities, cough, cyanosis, chest pain, and rapid heartbeat. Severe, symptomatic NO₂ intoxication after acute exposure has been linked on occasion with prolonged respiratory impairment with such symptoms as chronic bronchitis and decreased lung functions.

SULFUR DIOXIDE

Sulfur dioxide (SO₂) is produced by such stationary sources as coal and oil combustion, steel mills, refineries, pulp and paper mills. The major adverse health effects associated with SO₂ exposure pertain to the upper respiratory tract. SO₂ is a respiratory irritant with constriction of the bronchioles occurring with inhalation of SO₂ at 5 ppm or more. On contact with the moist mucous membranes, SO₂ produces sulfurous acid, which is a direct irritant. Concentration rather than duration of the exposure is an important determinant of respiratory effects. Exposure to high SO₂ concentrations may result in edema of the lungs or glottis and respiratory paralysis.

LEAD

Lead is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been mobile and industrial sources. As a result of the phase-out of leaded gasoline, as discussed in detail below, metal processing is currently the primary source of lead emissions. The highest levels of lead in air are generally found near lead smelters. Other stationary sources are waste incinerators, utilities, and lead-acid battery manufacturers.

Twenty years ago, mobile sources were the main contributor to ambient lead concentrations in the air. In the early 1970s, the EPA (EPA) set national regulations to gradually reduce the lead content in gasoline. In 1975, unleaded

gasoline was introduced for motor vehicles equipped with catalytic converters. The EPA banned the use of leaded gasoline in highway vehicles in December 1995 (EPA 2006).

As a result of the EPA's regulatory efforts to remove lead from gasoline, emissions of lead from the transportation sector have declined dramatically (95% between 1980 and 1999), and levels of lead in the air decreased by 94% between 1980 and 1999. Transportation sources, primarily airplanes, now contribute only 13% of lead emissions. A recent National Health and Nutrition Examination Survey reported a 78% decrease in the levels of lead in people's blood between 1976 and 1991. This dramatic decline can be attributed to the move from leaded to unleaded (EPA 2006).

All areas of the state are currently designated as attainment for the state lead standard (the EPA does not designate areas for the national lead standard). Although the ambient lead standards are no longer violated, lead emissions from stationary sources still pose "hot spot" problems in some areas. As a result, the Air Resources Board (ARB) identified lead as a toxic air contaminant.

Page: 1 03/30/2007 12:33 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version

8. $7\Proj\ ects2k2\Tahoe_Vi\ sta_Preparati\ on_Operati\ onal\ .\ urb$

Project Name: Project Location: Tahoe Vista-Initial Site Prep. & Operational Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Summer)

CONSTRUCTION EMISSION ESTIMATES

				PM10	PM10
ROG	NOx	CO	S02	TOTAL	EXHAUST
12. 97	98. 60	96. 14	0. 09	20. 40	4. 39
DOG	NO	CO	COO	DMO	
2. 88	0. 42	0. 84	0. 00	0. 00	
STI MATES					
ROG	NOx	CO	S02	PM10	
4. 85	9. 10	64. 10	0.05	8. 46	
SION ESTIN	MATES				
ROG 7. 73	N0x 9. 52	C0 64. 94	S02 0. 05	PM10 8. 46	
	ROG 2. 88 ESTI MATES ROG 4. 85 ESI ON ESTI M	ROG NOx 2. 88 0. 42 ESTI MATES ROG NOx 4. 85 9. 10 ESI ON ESTI MATES ROG NOx	ROG NOX CO 2. 88 0. 42 0. 84 ESTI MATES ROG NOX CO 4. 85 9. 10 64. 10 ESI ON ESTI MATES ROG NOX CO	ROG NOx CO S02 2. 88 0. 42 0. 84 0. 00 ESTI MATES ROG NOx CO S02 4. 85 9. 10 64. 10 0. 05 SSI ON ESTI MATES ROG NOx CO S02	ROG NOx CO SO2 TOTAL 12. 97 98. 60 96. 14 0. 09 20. 40 ROG NOx CO SO2 PM10 2. 88 0. 42 0. 84 0. 00 0. 00 ESTI MATES ROG NOx CO SO2 PM10 4. 85 9. 10 64. 10 0. 05 8. 46 SSI ON ESTI MATES ROG NOx CO SO2 PM10

Page: 2

03/30/2007 12:33 PM

8.7.0 URBEMIS 2002 For Windows

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Projects2k2\Tahoe_Vista_Preparation_Operational.urb

Project Name: Project Location: Tahoe Vista-Initial Site Prep. & Operational

Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

CONSTRUCTION EMISSION ESTIMATES

DM 0					PM10	PM10
PM10 *** 2007 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST
DUST TOTALS (lbs/day, unmitigated) 16.01	12. 97	98. 60	96. 14	0.09	20. 40	4. 39

Taho	TahoeVi sta_I ni ti al Si tePrep_Operati onal A. txt							
	ROG	NOx	C0	S02	PM10			
TOTALS (lbs/day, unmitigated)	2.80	0. 72	0. 31	0.00	0. 03			
· ·								
OPERATIONAL (VEHICLE) EMISSION	ESTI MATES							
	ROG	NOx	CO	S02	PM10			
TOTALS (lbs/day, unmitigated)	6. 19	10. 89	75. 66	0. 05	8. 46			
SUM OF AREA AND OPERATIONAL EMI	SSION ESTIM							
	ROG	NOx	CO	S02	PM10			
TOTALS (lbs/day, unmitigated)	9. 00	11. 60	75. 97	0. 05	8. 48			
· ·								

Page: 3

03/30/2007 12:33 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version File Name:

8. $7\Proj\ ects2k2\Tahoe_Vi\ sta_Preparati\ on_Operati\ onal\ .$ urb

Project Name: Project Location: Tahoe Vista-Initial Site Prep. & Operational

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

CONSTRUCTION EMISSION ESTIMATES	S				DM1 O	DM1 O	DM10
*** 2007 ***	ROG	NOx	CO	S02	PM10 TOTAL	PM10 EXHAUST	PM10 DUST
TOTALS (tpy, unmitigated)	0. 45	3. 79	3. 23	0. 00	0. 85	0. 15	0. 70
AREA SOURCE EMISSION ESTIMATES	Dog	wo	90	900	DIM 0		
TOTALS (tpy, unmitigated)	ROG 0. 51	N0x 0. 08	C0 0. 09	S02 0. 00	PM10 0.00		
OPERATI ONAL (VEHI CLE) EMI SSI ON			00	000	DIM 0		
TOTALS (tpy, unmitigated)	ROG 0. 97	NOx 1. 77	C0 12. 40	S02 0. 01	PM10 1.54		
SUM OF AREA AND OPERATIONAL EMI	SSION F	STI MATES					
	ROG	NOx	CO	S02	PM10		
TOTALS (tpy, unmitigated)	1. 48	1. 85	12. 49	0. 01	1. 54		

Page: 4

03/30/2007 12:33 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version File Name:

8. $7\Proj\ ects2k2\Tahoe_Vi\ sta_Preparati\ on_Operati\ onal\ .$ urb

Project Name: Tahoe Vista-Initial Site Prep. & Operational

Project Location: Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Winter)

Construction Start Month and Year: May, 2007

Construction Duration: 4

Total Land Use Area to be Developed: 6.25 acres Maximum Acreage Disturbed Per Day: 1.6 acres Single Family Units: 0 Multi-Family Units: 55 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

Source	ROG	NOx	СО	S02	PM10 TOTAL	PM10 EXHAUST	PM10 DUST
*** 2007***	Rod	NOX	CO	502	IOIAL	LAHAUST	DUST
Phase 1 - Demolition Emissic	ns						
Fugitive Dust	-	_	_	_	15. 12	_	15. 12
Off-Road Diesel	1. 77	10. 54	15. 08	_	0. 34	0. 34	0. 00
On-Road Diesel	2. 65	49. 59	9. 74	0.09	1. 33	1. 12	0. 21
Worker Trips	0.02	0.04	0.42	0.00	0.00	0.00	0.00
Maxi mum İbs/day	4. 44	60. 17	25. 24	0.09	16. 79	1. 46	15. 33
Phase 2 - Site Grading Emiss	i ons						
Fugitive Dust	-	-	-	_	16.00	-	16.00
Off-Road Diesel	12. 92	98. 58	95. 61	-	4. 39	4. 39	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0. 05	0. 02	0. 53	0.00	0. 01	0.00	0. 01
Maxi mum lbs/day	12. 97	98. 60	96. 14	0. 00	20. 40	4. 39	16. 01
Phase 3 - Building Construct	i on						
Bldg Const Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Bldg Const Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00			-			
Asphalt Off-Road Diesel	0. 00	0.00	0. 00	<u>-</u>	0.00	0.00	0. 00
Asphalt On-Road Diesel	0. 00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum lbs/day	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00
Max lbs/day all phases	12. 97	98. 60	96. 14	0.09	20. 40	4. 39	16. 01

Phase Turned OFF

Phase 3 - Building Construction Assumptions: Start Month/Year for Phase 1: May '07 Phase 1 Duration: 1.3 months Building Volume Total (cubic feet): 36000 Building Volume Daily (cubic feet): 36000 On-Road Truck Travel (VMT): 2001

Off-Road Equipment

No. Type Horsepower Load Factor Hours/Day Rubber Tired Loaders 165 0.465 10.5

Phase 2 - Site Grading Assumptions Start Month/Year for Phase 2: Jun '07

Phase 2 Duration: 2.7 months On-Road Truck Travel (VMT): 0

Off-Road Equipment

Horsepower 352 No. Load Factor Hours/Day Type 8.0 Rubber Tired Dozers 0.590 3 Tractor/Loaders/Backhoes 79 0.465 8.0

Page: 5

03/30/2007 12:33 PM

Tah	TahoeVi sta_I ni ti al Si tePrep_Operati onal A. txt							
Source	ROG	NOx	1 CO	S02	PM10			
Natural Gas	0. 03	0.41	0. 18	0	0.00			
Hearth	0. 02	0. 30	0. 13	0.00	0.02			
Landscaping - No winter emissi	i ons							
Consumer Prdcts	2. 69	-	-	-	-			
Architectural Coatings	0.06	-	-	-	_			
TOTALS(lbs/day, unmitigated)	2.80	0. 72	0. 31	0.00	0.03			

Page: 6 03/30/2007 12:33 PM

UNMITIGATED OPERATIONAL EMISSIONS

TAU/Affordable/Employee	ROG	N0x	C0	S02	PM10
	6. 19	10. 89	75. 66	0. 05	8.46
TOTAL EMISSIONS (1bs/day)	6. 19	10. 89	75. 66	0. 05	8. 46

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Temperature (F): 40 Season: Winter

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Uni ts	Total Tri ps
TAU/Affordable/Employee	6. 25	9.49 trips/dwelling unit	55. 00	522. 01
		Sum of Total Total Total Vehicle Miles Trave		522. 01 5. 577. 15

Vehicle Assumptions:

Fleet Mix:

Vehi cl e Type Li ght Auto	Percent Type 54.90	Non-Catal yst 1.30	Catal yst 98.40	Di esel 0. 30
Light Truck < 3, 750 lbs		2. 60	95. 40	2. 00
Light Truck 3, 751- 5, 75		1. 20	98. 10	0. 70
Med Truck 5, 751-8, 50	0 7. 30	1. 40	95. 90	2. 70
Lite-Heavy 8, 501-10, 00	0 1. 10	0.00	81. 80	18. 20
Lite-Heavy 10, 001-14, 00	0.30	0.00	66. 70	33. 30
Med-Heavy 14, 001-33, 00		0.00	20.00	80.00
Heavy-Heavy 33, 001-60, 00	0.90	0. 00	11. 10	88. 90
Li ne Haul > 60,000 lbs		0. 00	0.00	100.00
Urban Bus	0. 20	0.00	50.00	50.00
Motorcycle	1. 60	75. 00	25. 00	0.00
School Bus	0. 10	0. 00	0.00	100.00
Motor Home	1. 40	7. 10	85. 70	7. 20

Travel Conditions

		Resi denti al		Commerci al		
	Home-	Home-	Home-			
	Work	Shop	0ther	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	7. 3	7. 5	9. 5	7.4	7. 4
Rural Trip Length (miles)	16. 8	7. 1	7. 9	14. 7	6. 6	6. 6
Trip Speeds (mph)	35. 0	35. 0	35. 0	35. 0	35. 0	35. 0
% of Trips - Residential	32. 9	18. 0	49. 1			

Page: 7 03/30/2007 12:33 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/3.44 to 9.491/6.25

Changes made to the default values for Construction

Changes made to the default values for Area

The wood stove percentage changed from 35 to 0.

The wood fireplace percentage changed from 10 to 0.

The natural gas fireplace percentage changed from 55 to 100.

The landscape year changed from 2005 to 2009.

The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009.

Page: 8 03/30/2007 12:33 PM

URBEMIS 2002 For Windows 8, 7, 0

File Name: C:\Program Files\URBEMIS 2002 Version

8. 7\Projects2k2\Tahoe Vista Preparation Operational. urb

Tahoe Vista-Initial Site Prep. & Operational Project Name:

Project Location: Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: May, 2007

Construction Duration: 4

Total Land Use Area to be Developed: 6.25 acres Maximum Acreage Disturbed Per Day: 1.6 acres

Single Family Units: 0 Multi-Family Units: 55 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		`	J /		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***							
Phase 1 - Demolition Emissi	ons						
Fugitive Dust	-	-	-	-	15. 12	-	15. 12
Off-Road Diesel	1. 77	10. 54	15. 08	-	0. 34	0. 34	0.00
On-Road Diesel	2. 65	49. 59	9. 74	0.09	1. 33	1. 12	0. 21
Worker Trips	0. 02	0.04	0. 42	0.00	0.00	0.00	0.00
Maxi mum 1bs/day	4. 44	60. 17	25. 24	0.09	16. 79	1. 46	15. 33
Phase 2 - Site Grading Emis	si ons						
Fugitive Dust	-	-	-	-	16.00	-	16.00
Off-Road Diesel	12. 92	98. 58	95. 61	-	4. 39	4. 39	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.05	0.02	0. 53	0.00	0. 01	0.00	0. 01
Maxi mum 1bs/day	12. 97	98. 60	96. 14	0.00	20. 40	4. 39	16. 01

Phase 3 - Building Construction	n						
Bldg Const Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Bldg Const Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	0.00	0. 00	0. 00	0. 00	0.00	0.00	0.00
Max lbs/day all phases	12. 97	98. 60	96. 14	0. 09	20. 40	4. 39	16. 01

Phase Turned OFF

Phase 3 - Building Construction Assumptions: Start Month/Year for Phase 1: May '07 Phase 1 Duration: 1.3 months Building Volume Total (cubic feet): 36000 Building Volume Daily (cubic feet): 36000 On-Road Truck Travel (VMT): 2001 Off-Road Equipment

Type Rubber Tired Loaders Horsepower Load Factor Hours/Day 165 0.465 10. 5

Phase 2 - Site Grading Assumptions Start Month/Year for Phase 2: Jun '07 Phase 2 Duration: 2.7 months On-Road Truck Travel (VMT): 0

Off-Road Equipment

Vo.	Type	Horsepower	Load Factor	Hours/Day
3	Rubber Tired Dozers	352	0. 590	8. 0
3	Tractor/Loaders/Backhoes	79	0. 465	8. 0

Page: 9 03/30/2007 12:33 PM

AREA SOURCE EMISSION ESTIMATES	(Summer	Pounds per	Day, Unmi	tigated)	
Source	ROG	NÒx	CO	S02	PM10
Natural Gas	0.03	0.41	0. 18	0	0.00
Hearth - No summer emissions					
Landscapi ng	0. 10	0.00	0.66	0.00	0.00
Consumer Prdcts	2. 69	-	=	-	-
Architectural Coatings	0.06	-	-	-	-
TOTALS(lbs/day, unmitigated)	2. 88	0. 42	0.84	0.00	0.00

Page: 10

03/30/2007 12:33 PM

UNMITIGATED OPERATIONAL EMISSIONS

TAU/Affordable/Employee	ROG	N0x	C0	S02	PM10
	4. 85	9. 10	64. 10	0. 05	8. 46
TOTAL EMISSIONS (1 bs/day)	4. 85	9. 10	64. 10	0. 05	8. 46

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Temperature (F): 60 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Uni ts	Total Tri ps
TAU/Affordable/Employee	6. 25	9.49 trips/dwelling unit	55. 00	522. 01
		Sum of Total Tr Total Vehicle Miles Trave	ri ps el ed	522. 01 5, 577. 15

Vehicle Assumptions:

Fleet Mix:

Vehi cl e Type	Percent Type	Non-Catalyst	Catal yst	Di esel
Light Auto	54. 90 ° 1	1. 30	98. 40	0. 30
Light Truck < 3,750 lbs	s 15. 10	2. 60	95. 40	2. 00
Light Truck 3, 751- 5, 75	0 16. 10	1. 20	98. 10	0. 70
Med Truck 5, 751-8, 50	7. 30	1. 40	95. 90	2. 70
Lite-Heavy 8, 501-10, 00	0 1.10	0. 00	81. 80	18. 20
Lite-Heavy 10, 001-14, 00	0.30	0. 00	66. 70	33. 30
Med-Heavy 14, 001-33, 00	0 1.00	0. 00	20.00	80.00
Heavy-Heavy 33, 001-60, 00	0. 90	0. 00	11. 10	88. 90
Li ne Haul > 60,000 lbs	s 0.00	0. 00	0.00	100.00
Urban Bus	0. 20	0. 00	50.00	50.00
Motorcycle	1. 60	75. 00	25. 00	0.00
School Bus	0. 10	0. 00	0.00	100.00
Motor Home	1. 40	7. 10	85. 70	7. 20

Traval Conditions

Traver Conditions						
		Resi denti al			Commerci al	
	Home-	Home-	Home-			
	Work	Shop	0ther	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	7. 3	7. 5	9. 5	7. 4	7. 4
Rural Trip Length (miles)	16. 8	7. 1	7. 9	14. 7	6. 6	6. 6
Trip Speeds (mph)	35. 0	35. 0	35. 0	35. 0	35. 0	35. 0
% of Trips - Residential	32. 9	18. 0	49. 1			

Page: 11

03/30/2007 12:33 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/3.44 to 9.491/6.25

Changes made to the default values for Construction

Changes made to the default values for Area

The wood stove percentage changed from 35 to 0. The wood fireplace percentage changed from 10 to 0. The natural gas fireplace percentage changed from 55 to 100. The landscape year changed from 2005 to 2009. The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013. The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009.

Page: 12

03/30/2007 12:33 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Projects2k2\Tahoe_Vista_Preparation_Operational.urb

Project Name: Tahoe Vista-Initial Site Prep. & Operational

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

Construction Start Month and Year: May, 2007

Construction Duration: 4

Total Land Use Area to be Developed: 6.25 acres Maximum Acreage Disturbed Per Day: 1.6 acres Single Family Units: 0 Multi-Family Units: 55 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (tons/year)

					PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***							
Phase 1 - Demolition Emissions	5						
Fugitive Dust	_	-	-	_	0. 22	-	0. 22
Off-Road Diesel	0. 03	0. 15	0. 22	-	0.00	0.00	0.00
On-Road Diesel	0.04	0.71	0. 14	0.00	0.02	0.02	0.00
Worker Trips	0.00	0.00	0. 01	0.00	0.00	0.00	0.00
Total tons/year	0. 07	0. 86	0. 37	0. 00	0. 24	0. 02	0. 22
Phase 2 - Site Grading Emission	ons						
Fugitive Dust	_	-	_	_	0. 48	_	0.48
Off-Road Diesel	0. 38	2. 93	2.84	_	0. 13	0. 13	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.02	0.00	0.00	0.00	0.00
Total tons/year	0. 38	2. 93	2. 86	0.00	0. 61	0. 13	0.48
Phase 3 - Building Construction	on						
Bldg Const Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
Bldg Const Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0. 00
Total tons/year [*]	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Total all phases tons/yr	0. 45	3. 79	3. 23	0.00	0.85	0. 15	0. 70

Phase 3 - Building Construction Assumptions: Start Month/Year for Phase 1: May '07 Phase 1 Duration: 1.3 months Phase Turned OFF

Building Volume Total (cubic feet): 36000 Building Volume Daily (cubic feet): 36000 On-Road Truck Travel (VMT): 2001

Off-Road Equipment

Type No. Horsepower Load Factor Hours/Day Rubber Tired Loaders 165 0.465 10. 5

Phase 2 - Site Grading Assumptions

Start Month/Year for Phase 2: Jun '07 Phase 2 Duration: 2.7 months

On-Road Truck Travel (VMT): 0
Off-Road Equipment
No. Type

Horsepower 352 Load Factor Hours/Day Rubber Tired Dozers Tractor/Loaders/Backhoes 0.590 8.0 3 79 0.465 8.0

Page: 13

03/30/2007 12:33 PM

AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Unmitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0. 01	0.08	0. 03	0.00	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscapi ng	0. 01	0.00	0.06	0.00	0.00
Consumer Prdcts	0. 49	-	-	-	-
Architectural Coatings	0. 01	-	=	-	-
TOTALS (tpy, unmitigated)	0. 51	0.08	0.09	0.00	0.00

Page: 14 03/30/2007 12:33 PM

UNMITIGATED OPERATIONAL EMISSIONS

TAU/Affordable/Employee	ROG 0. 97	N0x 1. 77	12. 40	S02 0. 01	PM10 1.54
TOTAL EMISSIONS (tons/yr)	0. 97	1. 77	12. 40	0. 01	1. 54

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Units	Tri ps
TAU/Affordable/Employee	6. 25	9.49 trips/dwelling unit	55. 00	522. 01
		Sum of Total Tr Total Vehicle Miles Trave		522. 01 5, 577. 15

Vehicle Assumptions:

Fleet Mix:

Vehicle Type Light Auto Light Truck < 3,75 Light Truck 3,751 Med Truck 5,751	54 0 lbs 15 - 5, 750 16 - 8, 500 7	. 90 . 10 . 10 . 30	1. 30 98 2. 60 95 1. 20 98 1. 40 95	al yst Di esel 8. 40 0. 30 5. 40 2. 00 8. 10 0. 70 5. 90 2. 70
		. 30 . 10		1. 80 2. 70 1. 80 18. 20

Page 9

Ma

Total

	TahoeVista	_I ni ti al Si tePrep_0p	erati onal A. txt	
Lite-Heavy 10, 001-14, 000	0. 30	0.00	66. 70	33. 30
Med-Heavy 14, 001-33, 000	1. 00	0. 00	20. 00	80. 00
Heavy-Heavy 33, 001-60, 000	0. 90	0. 00	11. 10	88. 90
Li ne Haul > 60,000 lbs	0.00	0. 00	0.00	100.00
Urban Bus	0. 20	0. 00	50.00	50.00
Motorcycle	1. 60	75. 00	25. 00	0.00
School Bus	0. 10	0. 00	0.00	100.00
Motor Home	1. 40	7. 10	85. 70	7. 20

Travel Conditions

	Resi denti al				Commerci al	
	Home-	Home-	Home-			
	Work	Shop	0ther	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	7. 3	7. 5	9. 5	7. 4	7. 4
Rural Trip Length (miles)	16. 8	7. 1	7. 9	14. 7	6. 6	6. 6
Trip Speeds (mph)	35. 0	35. 0	35. 0	35. 0	35. 0	35. 0
% of Trips - Residential	32. 9	18. 0	49. 1			

Page: 15 03/30/2007 12:33 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/3.44 to 9.491/6.25

Changes made to the default values for Construction

Changes made to the default values for Area

The wood stove percentage changed from 35 to 0.

The wood fireplace percentage changed from 10 to 0.

The natural gas fireplace percentage changed from 55 to 100.

The landscape year changed from 2005 to 2009.

The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009.

Page: 1 03/30/2007 12:53 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version

8. 7\Projects2k2\Tahoe_Vista_Preparation_Operational_B. urb
Project Name: Tahoe Vista-Initial Site Prep. & Operational B
Project Location: Mountain Counties and Rural Counties
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Summer)

CONSTRUCTION EMISSION ESTIMATES

DM 0					PM10	PM10
PM10 *** 2007 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST
DUST TOTALS (1 bs/day, unmitigated) 16.01	12. 97	98. 60	96. 14	0. 09	20. 40	4. 39
AREA SOURCE EMISSION ESTIMATES TOTALS (lbs/day, unmitigated)	ROG 2. 58	N0x 0. 37	C0 0. 82	S02 0. 00	PM10 0.00	
OPERATI ONAL (VEHI CLE) EMI SSI ON	ESTI MATES ROG	NOx	CO	S02	PM10	
TOTALS (1 bs/day, unmitigated)	4. 29	8. 04	56. 61	0.04	7. 47	
SUM OF AREA AND OPERATIONAL EMI TOTALS (lbs/day, unmitigated)	SSI ON ESTI N ROG 6. 86	MATES NOx 8.41	C0 57. 43	S02 0. 04	PM10 7.47	
TOTALS (TDS/ day, uniii trgated)	0. 00	0.41	37.43	0.04	1.41	

Page: 2 03/30/2007 12:53 PM

8.7.0 URBEMIS 2002 For Windows

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Preparati on_Operati onal_B. urb
Proj ect Name: Tahoe Vi sta-Initial Site Prep. & Operational B Project Name: Project Location:

Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

CONSTRUCTION EMISSION ESTIMATES

DM 0					PM10	PM10
PM10 *** 2007 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST
DUST TOTALS (lbs/day, unmitigated) 16.01	12. 97	98. 60	96. 14	0.09	20. 40	4. 39

Taho	TahoeVi sta_I ni ti al Si tePrep_Operati onal B. txt						
	ROG	NOx	CO	S02	PM10		
TOTALS (lbs/day, unmitigated)	2. 50	0.64	0. 27	0.00	0. 02		
· ·							
OPERATIONAL (VEHICLE) EMISSION	ESTI MATES						
	ROG	NOx	CO	S02	PM10		
TOTALS (lbs/day, unmitigated)	5. 47	9. 61	66. 82	0. 04	7. 47		
SUM OF AREA AND OPERATIONAL EMI	SSION ESTIM						
	ROG	NOx	CO	S02	PM10		
TOTALS (lbs/day, unmitigated)	7. 97	10. 25	67. 09	0.04	7. 49		
3							

Page: 3

03/30/2007 12:53 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version

8. 7\Proj ects2k2\Tahoe_Vi sta_Preparati on_Operati onal_B. urb
Proj ect Name: Tahoe Vi sta-Initial Site Prep. & Operational B Project Name: Project Location:

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

CONSTRUCTION EMISSION ESTIMATES	;				PM10	PM10	PM10
*** 2007 *** TOTALS (tpy, unmitigated)	ROG 0. 45	N0x 3. 79	C0 3. 23	S02 0. 00	TOTAL 0. 85	EXHAUST 0. 15	DUST 0. 70
AREA SOURCE EMISSION ESTIMATES	Dog	WO	G O	900	D144.0		
TOTALS (tpy, unmitigated)	ROG 0. 46	N0x 0. 07	0. 09	S02 0. 00	PM10 0.00		
OPERATI ONAL (VEHI CLE) EMI SSI ON							
TOTALS (tpy, unmitigated)	ROG 0. 85	N0x 1. 56	C0 10. 95	S02 0. 01	PM10 1.36		
SUM OF AREA AND OPERATIONAL EMI	SSI ON E	STI MATES					
TOTALS (tpy, unmitigated)	ROG 1. 31	N0x 1. 63	C0 11. 04	S02 0. 01	PM10 1.36		

Page: 4

03/30/2007 12:53 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version File Name:

8.7\Projects2k2\Tahoe_Vista_Preparation_Operational_B.urb
Project Name: Tahoe Vista-Initial Site Prep. & Operational B Project Name:
Project Location:

Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Winter)

Construction Start Month and Year: May, 2007

Construction Duration: 4

Total Land Use Area to be Developed: 6.25 acres Maximum Acreage Disturbed Per Day: 1.6 acres Single Family Units: 0 Multi-Family Units: 49 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

Source	ROG	NOx	CO	S02	PM10 TOTAL	PM10 EXHAUST	PM10 DUST
*** 2007***							
Phase 1 - Demolition Emissic	ons				15 10		45 40
Fugitive Dust	-	10.54	15 00	-	15. 12	-	15. 12
Off-Road Diesel	1. 77	10. 54	15. 08	-	0. 34	0. 34	0.00
On-Road Di esel	2. 65	49. 59	9. 74	0. 09	1. 33	1. 12	0. 21
Worker Trips	0. 02	0. 04	0. 42	0.00	0.00	0.00	0. 00
Maxi mum lbs/day	4. 44	60. 17	25. 24	0. 09	16. 79	1. 46	15. 33
Phase 2 - Site Grading Emiss	si ons						
Fugitive Dust	-	_	_	_	16.00	_	16.00
Off-Road Diesel	12. 92	98. 58	95. 61	_	4. 39	4. 39	0. 00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0. 05	0. 02	0. 53	0. 00	0. 01	0. 00	0. 01
Maxi mum 1bs/day	12. 97	98. 60	96. 14	0. 00	20. 40	4. 39	16. 01
Phase 3 - Building Construct	i on						
Bldg Const Off-Road Diesel	0. 00	0.00	0.00	_	0.00	0.00	0.00
Bldg Const Worker Trips	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00
Arch Coatings Off-Gas	0. 00	-	-	-	-	-	-
Arch Coatings Worker Trips	0. 00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0. 00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0. 00	0.00	0.00	_	0.00	0.00	0.00
Asphalt On-Road Diesel	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00
Asphalt Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Maxi mum lbs/day	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Max lbs/day all phases	12. 97	98. 60	96. 14	0.09	20. 40	4. 39	16. 01

Phase Turned OFF

Phase 3 - Building Construction Assumptions: Start Month/Year for Phase 1: May '07 Phase 1 Duration: 1.3 months Building Volume Total (cubic feet): 36000 Building Volume Daily (cubic feet): 36000 On-Road Truck Travel (VMT): 2001

Off-Road Equipment

No. Type Horsepower Load Factor Hours/Day Rubber Tired Loaders 165 0.465 10.5

Phase 2 - Site Grading Assumptions

Start Month/Year for Phase 2: Jun '07

Phase 2 Duration: 2.7 months On-Road Truck Travel (VMT): 0

Off-Road Equipment

Horsepower 352 No. Load Factor Hours/Day Type 8.0 Rubber Tired Dozers 0.590 3 Tractor/Loaders/Backhoes 79 0.465 8.0

Page: 5

03/30/2007 12:53 PM

Tah	oeVista_Ini	ti al Si tePr	ep_0perati	onal B. txt	
Source	ROG	NOx	1 CO	S02	PM10
Natural Gas	0. 03	0. 37	0. 16	0	0.00
Hearth	0. 02	0. 27	0. 12	0.00	0.02
Landscaping - No winter emissi	ons				
Consumer Prdcts	2. 40	=	-	-	-
Architectural Coatings	0.06	-	-	-	-
TOTALS(lbs/day, unmitigated)	2. 50	0.64	0. 27	0.00	0.02

Page: 6 03/30/2007 12:53 PM

UNMITIGATED OPERATIONAL EMISSIONS

TAU/Affordable/Employee	ROG	N0x	C0	S02	PM10
	5. 47	9. 61	66. 82	0. 04	7.47
TOTAL EMISSIONS (1 bs/day)	5. 47	9. 61	66. 82	0. 04	7. 47

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Temperature (F): 40 Season: Winter

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Units	Total Tri ps
TAU/Affordable/Employee	6. 25	9.41 trips/dwelling unit	49. 00	460. 99
		Sum of Total T Total Vehicle Miles Trav		460. 99 4. 925. 28

Vehicle Assumptions:

Fleet Mix:

Vehicle Type Light Auto	Percent Type 54.90	Non-Catal yst 1.30	Catal yst 98. 40	Di esel 0. 30
Light Truck < 3,750 lbs		2. 60	95. 40	2. 00
Light Truck 3, 751- 5, 750 Med Truck 5, 751- 8, 500		1. 20 1. 40	98. 10 95. 90	0. 70 2. 70
Lite-Heavy 8, 501-10, 00		0. 00	81. 80	18. 20
Lite-Heavy 10, 001-14, 00		0. 00	66. 70	33. 30
Med-Heavy 14, 001-33, 00		0. 00	20. 00	80. 00
Heavy-Heavy 33, 001-60, 00		0. 00	11. 10	88. 90
Li ne Haul > 60, 000 l b		0.00	0.00	100.00
Urban Bus	0. 20	0. 00	50.00	50.00
Motorcycl e	1. 60	75. 00	25. 00	0.00
School Bus	0. 10	0. 00	0.00	100.00
Motor Home	1. 40	7. 10	85. 70	7. 20

Travel Conditions

	Resi denti al			Commerci al		
	Home-	Home-	Home-			
	Work	Shop	0ther	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	7. 3	7. 5	9. 5	7.4	7. 4
Rural Trip Length (miles)	16. 8	7. 1	7. 9	14. 7	6. 6	6. 6
Trip Speeds (mph)	35. 0	35. 0	35. 0	35. 0	35. 0	35. 0
% of Trips - Residential	32. 9	18. 0	49. 1			

Page: 7 03/30/2007 12:53 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/3.06 to 9.408/6.25

Changes made to the default values for Construction

Changes made to the default values for Area

The wood stove percentage changed from 35 to 0.

The wood fireplace percentage changed from 10 to 0.

The natural gas fireplace percentage changed from 55 to 100.

The landscape year changed from 2005 to 2009.

The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009.

Page: 8 03/30/2007 12:53 PM

URBEMIS 2002 For Windows 8, 7, 0

File Name: C:\Program Files\URBEMIS 2002 Version

8. 7\Projects2k2\Tahoe Vista Preparation Operational B. urb

Tahoe Vista-Initial Site Prep. & Operational B Project Name:

Project Location: Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: May, 2007

Construction Duration: 4

Total Land Use Area to be Developed: 6.25 acres Maximum Acreage Disturbed Per Day: 1.6 acres

Single Family Units: 0 Multi-Family Units: 49 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		`	J /		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***							
Phase 1 - Demolition Emissi	ons						
Fugitive Dust	-	-	-	-	15. 12	-	15. 12
Off-Road Diesel	1. 77	10. 54	15. 08	-	0. 34	0. 34	0.00
On-Road Diesel	2. 65	49. 59	9. 74	0.09	1. 33	1. 12	0. 21
Worker Trips	0. 02	0.04	0. 42	0.00	0.00	0.00	0.00
Maxi mum 1bs/day	4. 44	60. 17	25. 24	0.09	16. 79	1. 46	15. 33
Phase 2 - Site Grading Emis	si ons						
Fugitive Dust	-	-	-	-	16.00	-	16.00
Off-Road Diesel	12. 92	98. 58	95. 61	-	4. 39	4. 39	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.05	0.02	0. 53	0.00	0. 01	0.00	0. 01
Maxi mum 1bs/day	12. 97	98. 60	96. 14	0.00	20. 40	4. 39	16. 01

Phase 3 - Building Constructi	on						
Bldg Const Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Bldg Const Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum lbs/day Î	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max lbs/day all phases	12. 97	98. 60	96. 14	0. 09	20. 40	4. 39	16. 01

Phase Turned OFF

Phase 3 - Building Construction Assumptions: Start Month/Year for Phase 1: May '07 Phase 1 Duration: 1.3 months Building Volume Total (cubic feet): 36000 Building Volume Daily (cubic feet): 36000 On-Road Truck Travel (VMT): 2001 Off-Road Equipment

Type Rubber Tired Loaders Horsepower Load Factor Hours/Day 165 0.465 10. 5

Phase 2 - Site Grading Assumptions Start Month/Year for Phase 2: Jun '07 Phase 2 Duration: 2.7 months On-Road Truck Travel (VMT): 0

Off-Road Equipment

lo.	Type	Horsepower	Load Factor	Hours/Day
3	Rubber Tired Dozers	352	0. 590	8. 0
3	Tractor/Loaders/Backhoes	79	0. 465	8. 0

Page: 9 03/30/2007 12:53 PM

AREA SOURCE EMISSION ESTIMATES	(Summer	Pounds per	Day, Unmi	tigated)	
Source	ROG	NÒx	CO	S02	PM10
Natural Gas	0. 03	0. 37	0. 16	0	0.00
Hearth - No summer emissions					
Landscapi ng	0. 10	0.00	0.66	0.00	0.00
Consumer Prdcts	2. 40	-	-	-	-
Architectural Coatings	0.06	-	-	-	-
TOTALS(lbs/day, unmitigated)	2. 58	0. 37	0.82	0.00	0.00

Page: 10

03/30/2007 12:53 PM

UNMITIGATED OPERATIONAL EMISSIONS

TAU/Affordable/Employee	ROG	N0x	C0	S02	PM10
	4. 29	8. 04	56. 61	0. 04	7.47
TOTAL EMISSIONS (1 bs/day)	4. 29	8. 04	56. 61	0. 04	7. 47

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Temperature (F): 60 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Uni ts	Total Tri ps
TAU/Affordable/Employee	6. 25	9.41 trips/dwelling unit	49. 00	460. 99
		Sum of Total Total Total Vehicle Miles Tray	ri ps el ed	460. 99 4 925 28

Vehicle Assumptions:

Fleet Mix:

Vehi cl e Type	Percent Type	Non-Catalyst	Cat al yst	Di esel
Light Auto	54. 90	1. 30	98. 40	0. 30
Light Truck < 3,750 lbs	s 15. 10	2. 60	95. 40	2. 00
Light Truck 3, 751- 5, 750	16. 10	1. 20	98. 10	0. 70
Med Truck 5, 751-8, 500	7. 30	1. 40	95. 90	2. 70
Li te-Heavy 8, 501-10, 000	1. 10	0. 00	81. 80	18. 20
Li te-Heavy 10, 001-14, 000	0. 30	0. 00	66. 70	33. 30
Med-Heavy 14, 001-33, 000	1.00	0. 00	20.00	80.00
Heavy-Heavy 33, 001-60, 000	0. 90	0. 00	11. 10	88. 90
Li ne Haul > 60,000 lbs	s 0.00	0. 00	0.00	100.00
Urban Bus	0. 20	0. 00	50.00	50.00
Motorcycle	1. 60	75. 00	25. 00	0.00
School Bus	0. 10	0. 00	0.00	100.00
Motor Home	1. 40	7. 10	85. 70	7. 20

Travel Conditions

Traver conditions						
		Resi denti al			Commerci al	
	Home-	Home-	Home-			
	Work	Shop	0ther	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	7. 3	7. 5	9. 5	7. 4	7. 4
Rural Trip Length (miles)	16. 8	7. 1	7. 9	14. 7	6. 6	6. 6
Trip Speeds (mph)	35. 0	35. 0	35. 0	35. 0	35. 0	35. 0
% of Trips - Residential	32. 9	18. 0	49. 1			

Page: 11

03/30/2007 12:53 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/3.06 to 9.408/6.25

Changes made to the default values for Construction

Changes made to the default values for Area

The wood stove percentage changed from 35 to 0. The wood fireplace percentage changed from 10 to 0. The natural gas fireplace percentage changed from 55 to 100. The landscape year changed from 2005 to 2009. The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013. The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009.

Page: 12

03/30/2007 12:53 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Projects2k2\Tahoe_Vista_Preparation_Operational_B. urb

Project Name: Tahoe Vista-Initial Site Prep. & Operational B

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

Construction Start Month and Year: May, 2007

Construction Duration: 4

Total Land Use Area to be Developed: 6.25 acres

Maximum Acreage Disturbed Per Day: 1.6 acres Single Family Units: 0 Multi-Family Units: 49 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (tons/year)

CONSTRUCTION EMISSION ESTIMATE	S UNIVIL II G	AILD (LOIIS	year)		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***	170 G	11011		202	101112	2.2	2021
Phase 1 - Demolition Emissions							
Fugitive Dust	-	-	-	-	0. 22	-	0. 22
Off-Road Diesel	0. 03	0. 15	0. 22	-	0.00	0.00	0.00
On-Road Diesel	0.04	0. 71	0. 14	0.00	0. 02	0. 02	0.00
Worker Trips	0.00	0.00	0. 01	0.00	0.00	0.00	0.00
Total tons/year	0. 07	0. 86	0. 37	0.00	0. 24	0. 02	0. 22
Phase 2 - Site Grading Emissio	ne						
Fugitive Dust	-	_	_	_	0. 48	_	0. 48
Off-Road Diesel	0. 38	2. 93	2. 84	_	0. 13	0. 13	0. 00
On-Road Diesel	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00
Worker Trips	0. 00	0. 00	0. 02	0. 00	0. 00	0. 00	0. 00
Total tons/year	0. 38	2. 93	2. 86	0.00	0.61	0. 13	0.48
Phase 3 - Building Construction	n						
Bldg Const Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
Bldg Const Worker Trips	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00
Arch Coatings Off-Gas	0.00	_	_	-	_	-	_
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	=.
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0. 00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Total all phases tons/yr	0. 45	3. 79	3. 23	0.00	0. 85	0. 15	0. 70

Phase 3 - Building Construction Assumptions: Start Month/Year for Phase 1: May '07 Phase 1 Duration: 1.3 months Phase Turned OFF

Building Volume Total (cubic feet): 36000 Building Volume Daily (cubic feet): 36000 On-Road Truck Travel (VMT): 2001

Off-Road Equipment

No. Tvpe Horsepower Load Factor Hours/Day Rubber Tired Loaders 165 0.465 10. 5

Phase 2 - Site Grading Assumptions

TahoeVista_InitialSitePrep_OperationalB.txt
Start Month/Year for Phase 2: Jun '07
Phase 2 Duration: 2.7 months
On-Road Truck Travel (NAT) On-Road Truck Travel (VMT): 0
Off-Road Equipment
No. Type

Horsepower 352 Load Factor Hours/Day Rubber Tired Dozers Tractor/Loaders/Backhoes 0.590 8.0 3 79 0.465 8.0

Page: 13

03/30/2007 12:53 PM

AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Unmitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0. 01	0.07	0. 03	0.00	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscapi ng	0. 01	0.00	0.06	0.00	0.00
Consumer Prdcts	0. 44	-	-	-	-
Architectural Coatings	0. 01	-	=	-	-
TOTALS (tpy, unmitigated)	0. 46	0.07	0.09	0.00	0.00

Page: 14 03/30/2007 12:53 PM

UNMITIGATED OPERATIONAL EMISSIONS

TAU/Affordable/Employee	ROG	N0x	C0	S02	PM10
	0. 85	1. 56	10. 95	0. 01	1.36
TOTAL EMISSIONS (tons/yr)	0. 85	1. 56	10. 95	0. 01	1. 36

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2009

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	Units	Tri ps
TAU/Affordable/Employee	6. 25	9.41 trips/dwelling unit	49. 00	460. 99
		Sum of Total Tr Total Vehicle Miles Trave	ri ps el ed	460. 99 4, 925. 28

Vehicle Assumptions:

Fleet Mix:

Vehicle Type Light Auto Light Truck < 3,750 Light Truck 3,751-	5, 750 16. 10	1. 30 2. 60 1. 20	Catal yst 98. 40 95. 40 98. 10 95. 90	Di esel 0. 30 2. 00 0. 70 2. 70
Meď Truck 5, 751-	8, 500 7. 30	1. 40	95. 90	2. 70
Li te-Heavy 8, 501-1	0, 000 1. 10	0. 00	81. 80	18. 20

Page 9

Tatal

	TahoeVista	_I ni ti al Si tePrep_0p	erati onal B. txt	•
Lite-Heavy 10, 001-14, 000	0. 30	0.00	66. 70	33. 30
Med-Heavy 14, 001-33, 000	1. 00	0. 00	20. 00	80. 00
Heavy-Heavy 33, 001-60, 000	0. 90	0.00	11. 10	88. 90
Li ne Haul > 60,000 lbs	0.00	0. 00	0.00	100.00
Urban Bus	0. 20	0.00	50.00	50.00
Motorcycle	1. 60	75. 00	25. 00	0.00
School Bus	0. 10	0.00	0.00	100.00
Motor Home	1. 40	7. 10	85. 70	7. 20

Travel Conditions

	Resi denti al			Commerci al			
	Home- Home-						
	Work	Shop	0ther	Commute	Non-Work	Customer	
Urban Trip Length (miles)	10.8	7. 3	7. 5	9. 5	7. 4	7. 4	
Rural Trip Length (miles)	16. 8	7. 1	7. 9	14. 7	6. 6	6. 6	
Trip Speeds (mph)	35. 0	35. 0	35. 0	35. 0	35. 0	35. 0	
% of Trips - Residential	32. 9	18. 0	49. 1				

Page: 15 03/30/2007 12:53 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/3.06 to 9.408/6.25

Changes made to the default values for Construction

Changes made to the default values for Area

The wood stove percentage changed from 35 to 0.

The wood fireplace percentage changed from 10 to 0.

The natural gas fireplace percentage changed from 55 to 100.

The landscape year changed from 2005 to 2009.

The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0013.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009.

Page: 1 03/30/2007 12:12 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase1. urb

Project Name:

Project Location:

On-Road Motor Vehicle Emissions

Tahoe Vista-Phase 1

Mountain Counties and Rural Counties an Mountain Counties and Rural Counties

SUMMARY REPORT (Pounds/Day - Summer)

CONSTRUCTION EMISSION ESTIMATES

DW10					PM10	PM10
PM10 *** 2007 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (lbs/day, unmitigated) 0.01	5. 28	37. 95	41. 78	0.00	1. 62	1. 61
0.01						
					PM10	PM10
PM10 *** 2008 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST
DUST TOTALS (1 bs/day, unmitigated) 0.03	12. 66	67. 51	88. 22	0. 00	2. 44	2. 41

Page: 2 03/30/2007 12:12 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version 8.7\Projects2k2\Tahoe_Vista_Phase1.urb
Project Name: Tahoe Vista-Phase 1
Project Location: Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

CONSTRUCTION EMISSION ESTIMATES

DM10					PM10	PM10
PM10 *** 2007 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (1 bs/day, unmi ti gated) 0.01	5. 28	37. 95	41. 78	0. 00	1. 62	1. 61
					PM10	PM10
PM10 *** 2008 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (1 bs/day, unmitigated) 0.03	12. 66	67. 51	88. 22	0. 00	2. 44	2. 41

D1440

TahoeVi sta_Phase1A. txt

Page: 3 03/30/2007 12:12 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version

CONSTRUCTION EMISSION ESTIMATES

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase1. urb
Proj ect Name: Tahoe V
Proj ect Location: Mountai Tahoe Vista-Phase 1

Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

CONSTRUCTION LIMITSSION ESTIMAT	LO				PM10	PM10	PM10
*** 2007 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
TOTALS (tpy, unmitigated)	0.41	2. 93	3. 21	0.00	0. 12	0. 12	0.00

					PM10	PM10	PM10
*** 2008 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
TOTALS (tpy, unmitigated)	0. 22	1. 37	1. 67	0.00	0.06	0.06	0.00

Page: 4

03/30/2007 12:12 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version 8.7\Projects2k2\Tahoe_Vista_Phase1.urb
Project Name:
Tahoe Vista-Phase 1
Project Location:
On-Road Motor Vista

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Winter)

Construction Start Month and Year: June, 2007

Construction Start Month and Tear. Sune, 2007
Construction Duration: 10
Total Land Use Area to be Developed: 2.55 acres
Maximum Acreage Disturbed Per Day: 0.6 acres
Single Family Units: 0 Multi-Family Units: 15
Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1 bs/day)

			J -		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***							
Phase 1 - Demolition Emission	ns						
Fugitive Dust	-	-	-	-	0.00	-	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1bs/day	0.00	0. 00	0.00	0.00	0. 00	0.00	0.00
Phase 2 - Site Grading Emiss	i ons						
Fugitive Dust	-	_	_	_	0.00	_	0. 00
Off-Road Diesel	0.00	0.00	0.00	_	0. 00	0.00	0. 00
On-Road Diesel	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00

Worker Trips Maximum lbs/day	0. 00 0. 00	TahoeVi sta_ 0. 00 0. 00	Phase1A. tx 0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel Bldg Const Worker Trips Arch Coatings Off-Gas Arch Coatings Worker Trips	5. 18 0. 10 0. 00 0. 00	37. 74 0. 21 0. 00	39. 43 2. 35 0. 00	0. 00 - 0. 00	1. 60 0. 01 0. 00	1. 60 0. 00 - 0. 00	0. 00 0. 01 - 0. 00
Asphalt Off-Gas Asphalt Off-Road Diesel Asphalt On-Road Diesel Asphalt Worker Trips Maximum lbs/day	0. 00 0. 00 0. 00 0. 00 5. 28	0. 00 0. 00 0. 00 0. 00 37. 95	0. 00 0. 00 0. 00 41. 78	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 1. 62	0. 00 0. 00 0. 00 1. 61	0. 00 0. 00 0. 00 0. 01
Max lbs/day all phases	5. 28	37. 95	41. 78	0.00	1. 62	1. 61	0. 01
*** 2008*** Phase 1 - Demolition Emissions Fugitive Dust Off-Road Diesel On-Road Diesel Worker Trips Maximum lbs/day	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00
Phase 2 - Site Grading Emission Fugitive Dust Off-Road Diesel On-Road Diesel Worker Trips Maximum 1 bs/day	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel Bldg Const Worker Trips Arch Coatings Off-Gas Arch Coatings Worker Trips Asphalt Off-Gas Asphalt Off-Road Diesel Asphalt On-Road Diesel Asphalt Worker Trips Maximum lbs/day	5. 18 0. 10 2. 03 0. 03 0. 05 5. 25 0. 01 0. 02 12. 66	36. 06 0. 20 0. 02 30. 95 0. 25 0. 01 67. 51	40. 55 2. 32 0. 39 44. 62 0. 05 0. 29 88. 22	0. 00 0. 00 - 0. 00 0. 00 0. 00 0. 00	1. 45 0. 01 0. 01 0. 96 0. 01 0. 01 2. 44	1. 45 0. 00 0. 00 0. 96 0. 01 0. 00 2. 41	0. 00 0. 01 0. 01 0. 00 0. 00 0. 01 0. 03
Max lbs/day all phases	12. 66	67. 51	88. 22	0.00	2. 44	2. 41	0. 03

Page: 5 03/30/2007 12:12 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions
Start Month/Year for Phase 3: Jun '07
Phase 3 Duration: 10 months
Start Month/Year for SubPhase Building: Jun '07
SubPhase Building Duration: 10 months
Off-Road Equipment
No. Type

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
1	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5
~ .				

Start Month/Year for SubPhase Architectural Coatings: Mar '08 SubPhase Architectural Coatings Duration: 1 months Start Month/Year for SubPhase Asphalt: Mar '08

Page 3

TahoeVi sta_Phase1A. txt

SubPhase Asphalt Duration: 0.5 months

Acres to be Paved: 0.2

Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	l Graders	174	0. 575	10. 5
]	l Pavers	132	0. 590	10. 5
1	l Rollers	114	0. 430	10. 5

Page: 6

03/30/2007 12: 12 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/.94 to 0/2.55

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 7

03/30/2007 12: 12 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase1. urb

Tahoe Vista-Phase 1 Project Name:

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: June, 2007

Construction Duration: 10

Total Land Use Area to be Developed: 2.55 acres Maximum Acreage Disturbed Per Day: 0.6 acres Single Family Units: 0 Multi-Family Units: 15

Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		<i>J</i> /		PM10	PM10	PM10
ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
_	_	_	_	0.00	_	0.00
0.00	0.00	0.00	_	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0. 00	0.00	0. 00	0.00
ns						
-	_	_	_	0.00	_	0.00
0.00	0.00	0.00	-	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0. 00 0. 00 0. 00 0. 00 0. 00 ms	0. 00	0. 00	0. 00	0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOX CO SO2 TOTAL EXHAUST 0.00 0.00 0.00 0.00 0.00

Phase 3 - Building Construction

	TahoeVi sta	Phase1A.tx	t			
5. 18	37. 74	39. 43	-	1. 60	1. 60	0.00
			0. 00			0. 01
			0. 00			0. 00
0. 00	-	-	-	-	-	-
0.00	0.00	0.00		0.00	0.00	0.00
						0.00
						0. 00 0. 01
J. 20	37. 93	41. 76	0.00	1. 02	1. 01	0. 01
5. 28	37. 95	41. 78	0.00	1. 62	1. 61	0. 01
		<u>-</u>	-	0.00	_	0.00
			-			0.00
						0. 00 0. 00
						0.00
S				0.00		0.00
0 00	0.00	0.00			0.00	0. 00 0. 00
						0.00
0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
	36, 06	40. 55	_	1. 45	1. 45	0.00
0. 10	0. 20	2. 32	0.00	0. 01	0. 00	0. 01
2.03			-		_	
			0. 00		0. 00	0. 01
			-		0.06	0. 00
			0 00			0.00
						0. 01
12. 66	67. 51	88. 22	0.00	2. 44	2. 41	0.03
12. 66	67. 51	88. 22	0.00	2. 44	2. 41	0. 03
	0. 10 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 5. 28 5. 28 5. 28 6. 00 0.	5. 18 37. 74 0. 10 0. 21 0. 00	5. 18 37. 74 39. 43 0. 10 0. 21 2. 35 0. 00 0. 00 0. 00 0. 00 0. 00 0.	0. 10	5. 18 37. 74 39. 43 - 1. 60 0. 10 0. 21 2. 35 0. 00 0. 01 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 5. 28 37. 95 41. 78 0. 00 1. 62 5. 28 37. 95 41. 78 0. 00 1. 62 6. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00<	5. 18 37, 74 39, 43 - 1, 60 1, 60 0. 10 0. 21 2, 35 0. 00 0. 01 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 <t< td=""></t<>

Page: 8 03/30/2007 12:12 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Jun '07 Phase 3 Duration: 10 months

Start Month/Year for SubPhase Building: Jun '07 SubPhase Building Duration: 10 months
Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
1	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5
C++	Manada VV and Carlo Diagram Andria de la deservación de la contraction de la contrac	+1 C+ N	f ! 00	

Start Month/Year for SubPhase Architectural Coatings: Mar SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Mar '08
SubPhase Asphalt Duration: 0.5 months
Acres to be Paved: 0.2
Off-Road Equipment
No. Type
Horsepower I Load Factor Hours/Day

Page 5

TahoeVista Phase1A.txt

1	Graders	174	0. 575	10. 5	
1	Pavers	132	0. 590	10. 5	
1	Rollers	114	0. 430	10. 5	

Page: 9

03/30/2007 12:12 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/.94 to 0/2.55

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 10

03/30/2007 12: 12 PM

URBEMIS 2002 For Windows 8. 7. 0

File Name: C: $\Program\ Files\URBEMIS\ 2002\ Version\ 8.7\Projects2k2\Tahoe_Vista_Phase1.\ urb$

Project Name: Project Location: Tahoe Vista-Phase 1

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

Construction Start Month and Year: June, 2007 Construction Duration: 10 Total Land Use Area to be Developed: 2.55 acres Maximum Acreage Disturbed Per Day: 0.6 acres Single Family Units: 0 Multi-Family Units: 15

Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (tons/year)

	. 011112	(00110	y car,		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***	1000	11071	00	202	1011112	Limited	2001
Phase 1 - Demolition Emissions							
Fugitive Dust	_	-	_	-	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0.00	0.00	0.00	0.00	0.00	0.00	0.00
·							
Phase 2 - Site Grading Emission	ıs						
Fugitive Dust	-	=	-	-	0.00	=	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0.00	0.00	0.00	0.00	0.00	0.00	0.00
v							
Phase 3 - Building Construction	1						
Bldg Const Off-Road Diesel	0.40	2. 91	3. 04	-	0. 12	0. 12	0.00
Bldg Const Worker Trips	0. 01	0.02	0. 17	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	-	-	_	_	_	_
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•							

A 1 1, 000 C		hoeVista_P	hase1A. txt				
Asphalt Off-Gas Asphalt Off-Road Diesel	0. 00 0. 00	0. 00	0. 00	-	0. 00	0. 00	0. 00
Asphalt On-Road Diesel	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Asphalt Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Total tons/year '	0.41	2. 93	3. 21	0.00	0. 12	0. 12	0.00
Total all phages tons/w	0. 41	2. 93	3. 21	0. 00	0. 12	0. 12	0. 00
Total all phases tons/yr	0.41	2. 93	3. 21	0.00	0. 12	0. 12	0.00
*** 2008***							
Phase 1 - Demolition Emissions							
Fugitive Dust	-	-		-	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0. 00	0.00	0. 00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0. 00	0. 00	0. 00	0. 00	0.00	0. 00	0. 00
Total tons/year	0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Phase 2 - Site Grading Emission	ıs						
Fugitive Dust	-	-	-	-	0.00	-	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road_Di esel	0. 00	0.00	0. 00	0. 00	0. 00	0.00	0.00
Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Total tons/year	0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Phase 3 - Building Construction	1						
Bl dg Const Off-Road Di esel	0. 17	1. 19	1. 34	-	0.05	0.05	0.00
Bldg Const Worker Trips	0.00	0. 01	0. 08	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas_	0. 02		-			-	
Arch Coatings Worker Trips	0. 00	0.00	0. 00	0.00	0.00	0.00	0. 00
Asphalt Off-Gas	0. 00	- 17	-	-	-	-	-
Asphalt Off-Road Diesel	0. 03	0. 17	0. 25	-	0. 01	0. 01	0.00
Asphalt On-Road Diesel	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0.00
Asphalt Worker Trips	0. 00 0. 22	0. 00 1. 37	0. 00 1. 67	0.00	0.00	0.00	0.00
Total tons/year	U. &&	1. 37	1.07	0. 00	0. 06	0. 06	0. 00
Total all phases tons/yr	0. 22	1. 37	1. 67	0.00	0.06	0.06	0.00

Page: 11

1

1

Pavers

Rollers

03/30/2007 12:12 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions

Start Month/Year for Phase 3: Jun '07 Phase 3 Duration: 10 months Start Month/Year for SubPhase Building: Jun '07 SubPhase Building Duration: 10 months Off-Road Equipment Type No. Horsepower Load Factor Hours/Day Concrete/Industrial saws 84 0.730 10. 5 1 Other Equipment 190 0.0
1 Rough Terrain Forklifts 94 0.4
Start Month/Year for SubPhase Architectural Coatings: Mar '08
SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Mar '08
SubPhase Asphalt Duration: 0.5 months 0.620 10.5 0.475 10.5 Acres to be Paved: 0.2 Off-Road Equipment Type Load Factor Hours/Day No. Horsepower 1 Graders $17\overline{4}$ 0.575 10. 5

132

114

0.590

0.430

10. 5

10.5

TahoeVista_Phase1A.txt

Page: 12 03/30/2007 12:12 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/.94 to 0/2.55

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 1 03/30/2007 12:56 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase1_B. urb

Project Name:

Tahoe Vista-Phase 1B

Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2 Mountain Counties and Rural Counties

SUMMARY REPORT (Pounds/Day - Summer)

CONSTRUCTION EMISSION ESTIMATES

DWIO					PM10	PM10
PM10 *** 2007 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (lbs/day, unmitigated) 0.01	5. 28	37. 95	41. 78	0.00	1. 62	1. 61
0.01						
200					PM10	PM10
PM10 *** 2008 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST
DUST TOTALS (lbs/day, unmitigated) 0.03	12. 66	67. 51	88. 22	0. 00	2. 44	2. 41

Page: 2 03/30/2007 12:56 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version 8.7\Projects2k2\Tahoe_Vista_Phase1_B.urb
Project Name:
Tahoe Vista-Phase 1B
Project Location:
On-Road Metar Vista

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

CONSTRUCTION EMISSION ESTIMATES

CONSTRUCTION EMISSION ESTIMATES	,				PM10	PM10
PM10 *** 2007 *** DUST	ROG	NOx	СО	S02	TOTAL	EXHAUST
TOTALS (lbs/day, unmitigated) 0.01	5. 28	37. 95	41. 78	0. 00	1. 62	1. 61
PM10					PM10	PM10
*** 2008 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (lbs/day, unmitigated) 0.03	12. 66	67. 51	88. 22	0. 00	2. 44	2. 41

Page: 3 03/30/2007 12:56 PM

URBEMIS 2002 For Windows 8, 7, 0

C:\Program Files\URBEMIS 2002 Version File Name:

Tahoe Vista-Phase 1B

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase1_B. urb
Proj ect Name: Tahoe Vi sta_Phase1_B. urb
Proj ect Location: Mountain Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

CONSTRUCTION EMISSION ESTIMATES

*** 2007 *** TOTALS (tpy, unmitigated)	ROG 0. 41	N0x 2. 93	C0 3. 21	S02 0. 00	PM10 TOTAL 0.12	PM10 EXHAUST 0. 12	PM10 DUST 0. 00
*** 2008 *** TOTALS (tpy, unmitigated)	ROG 0. 22	N0x 1. 37	C0 1. 67	S02 0. 00	PM10 TOTAL 0.06	PM10 EXHAUST 0.06	PM10 DUST 0. 00

Page: 4

03/30/2007 12:56 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version 8.7\Projects2k2\Tahoe_Vista_Phase1_B.urb
Project Name:
Tahoe Vista-Phase 1B
Project Location:
On-Road Motor Vista

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Winter)

Construction Start Month and Year: June, 2007

Construction Start Month and Tear. Sune, 2007
Construction Duration: 10
Total Land Use Area to be Developed: 2.5 acres
Maximum Acreage Disturbed Per Day: 0.6 acres
Single Family Units: 0 Multi-Family Units: 15
Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1 bs/day)

			J -		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***							
Phase 1 - Demolition Emissio	ns						
Fugitive Dust	-	-	-	-	0.00	-	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1bs/day	0.00	0. 00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading Emiss	i ons						
Fugitive Dust	-	_	_	_	0.00	_	0. 00
Off-Road Diesel	0.00	0.00	0.00	_	0. 00	0.00	0. 00
On-Road Diesel	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00

		TahoeVista_	Phase1B. tx	t			
Worker Trips Maximum lbs/day	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel Bldg Const Worker Trips	5. 18 0. 10	37. 74 0. 21	39. 43 2. 35	0. 00	1. 60 0. 01	1. 60 0. 00	0. 00 0. 01
Arch Coatings Off-Gas Arch Coatings Worker Trips Asphalt Off-Gas	0. 00 0. 00 0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Asphalt Off-Road Diesel Asphalt On-Road Diesel Asphalt Worker Trips Maximum lbs/day	0. 00 0. 00 0. 00 5. 28	0. 00 0. 00 0. 00 37. 95	0. 00 0. 00 0. 00 41. 78	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 1. 62	0. 00 0. 00 0. 00 1. 61	0. 00 0. 00 0. 00 0. 01
Max lbs/day all phases	5. 28	37. 95	41. 78	0.00	1. 62	1. 61	0. 01
*** 2008*** Phase 1 - Demolition Emissions							
Fugitive Dust Off-Road Diesel On-Road Diesel Worker Trips Maximum lbs/day	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00
Phase 2 - Site Grading Emissions Fugitive Dust Off-Road Diesel On-Road Diesel Worker Trips Maximum lbs/day	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel Bldg Const Worker Trips Arch Coatings Off-Gas Arch Coatings Worker Trips Asphalt Off-Gas Asphalt Off-Road Diesel Asphalt On-Road Diesel Asphalt Worker Trips	5. 18 0. 10 2. 03 0. 03 0. 05 5. 25 0. 01 0. 02	36. 06 0. 20 0. 02 30. 95 0. 25 0. 01	40. 55 2. 32 0. 39 44. 62 0. 05 0. 29	0. 00 0. 00 - 0. 00 - 0. 00 0. 00	1. 45 0. 01 0. 01 0. 96 0. 01 0. 01	1. 45 0. 00 0. 00 0. 96 0. 01 0. 00	0. 00 0. 01 0. 01 0. 00 0. 00 0. 00 0. 01
J	12. 66 12. 66	67. 51 67. 51	88. 22 88. 22	0. 00 0. 00	 44 44 	2. 412. 41	0. 03 0. 03

Page: 5 03/30/2007 12:56 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Jun'07 Phase 3 Duration: 10 months Start Month/Year for SubPhase Building: Jun'07

SubPhase Building Duration: 10 months Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
1	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5
		<u> </u>		

Start Month/Year for SubPhase Architectural Coatings: Mar '08 SubPhase Architectural Coatings Duration: 1 months Start Month/Year for SubPhase Asphalt: Mar '08

TahoeVi sta_Phase1B. txt

SubPhase Asphalt Duration: 0.5 months

Acres to be Paved: 0.2

Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Graders	$17\hat{4}$	0. 575	10. 5
1	Pavers	132	0. 590	10. 5
1	Rollers	114	0. 430	10. 5

Page: 6

03/30/2007 12:56 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/.94 to 0/2.50

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 7

03/30/2007 12:56 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase1_B. urb

Tahoe Vista-Phase 1B Project Name:

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: June, 2007

Construction Duration: 10

Total Land Use Area to be Developed: 2.5 acres Maximum Acreage Disturbed Per Day: 0.6 acres Single Family Units: 0 Multi-Family Units: 15

Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		<i>J</i> /		PM10	PM10	PM10
ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
_	_	_	_	0.00	_	0.00
0.00	0.00	0.00	_	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0. 00	0.00	0.00	0.00
ns						
-	_	_	_	0.00	_	0.00
0.00	0.00	0.00	-	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0. 00 0. 00 0. 00 0. 00 0. 00 ms	0. 00	0. 00	0. 00	0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOX CO SO2 TOTAL EXHAUST 0.00 0.00 0.00 0.00 0.00

Phase 3 - Building Construction

		TahoeVista_	Phase1B.tx	t			
Bldg Const Off-Road Diesel	5. 18	37. 74	39. 43	-	1.60	1. 60	0.00
Bldg Const Worker Trips	0. 10	0. 21	2. 35	0.00	0. 01	0.00	0.01
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	5. 28	37. 95	41. 78	0. 00	1. 62	1. 61	0. 01
Max lbs/day all phases	5. 28	37. 95	41. 78	0. 00	1. 62	1. 61	0. 01
*** 2008***							
Phase 1 - Demolition Emissions							
Fugitive Dust					0. 00		0.00
Off-Road Diesel	0. 00	0. 00	0. 00	-	0. 00	0. 00	0.00
On-Road Diesel	0.00	0. 00	0. 00	0.00	0. 00	0. 00	0.00
Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Maxi mum lbs/day	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
maxi mam 1857 day	0. 00	0.00	0. 00	0. 00	0. 00	0.00	0.00
Phase 2 - Site Grading Emission	s						
Fugitive Dust	_	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1bs/day	0.00	0.00	0.00	0.00	0.00	0. 00	0.00
Phase 3 - Building Construction							
Bldg Const Off-Road Diesel	5. 18	36. 06	40. 55	_	1. 45	1. 45	0.00
Bldg Const Worker Trips	0. 10	0. 20	2. 32	0.00	0. 01	0. 00	0. 01
Arch Coatings Off-Gas	2.03	-	-	-	-	-	-
Arch Coatings Worker Trips	0.03	0.02	0. 39	0.00	0. 01	0.00	0.01
Asphalt Off-Gas	0.05	-	-	-	_	-	-
Asphalt Off-Road Diesel	5. 25	30. 95	44. 62	-	0. 96	0. 96	0.00
Asphalt On-Road Diesel	0.01	0. 25	0. 05	0.00	0. 01	0. 01	0.00
Asphalt Worker Trips	0.02	0. 01	0. 29	0.00	0. 01	0.00	0. 01
	12. 66	67. 51	88. 22	0.00	2. 44	2. 41	0. 03
Max lbs/day all phases	12. 66	67. 51	88. 22	0.00	2. 44	2. 41	0. 03

Page: 8 03/30/2007 12:56 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Jun '07 Phase 3 Duration: 10 months

Start Month/Year for SubPhase Building: Jun '07 SubPhase Building Duration: 10 months Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
1	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5

Start Month/Year for SubPhase Architectural Coatings: Mar '08 SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Mar '08
SubPhase Asphalt Duration: 0.5 months
Acres to be Paved: 0.2
Off-Road Equipment
No. Type
Horsepower Load Load Factor Hours/Day

Page 5

TahoeVista Phase1B.txt

1	Graders	$\overline{174}$	0. 575	10. 5
1	Pavers	132	0. 590	10. 5
1	Rollers	114	0. 430	10. 5

Page: 9

03/30/2007 12:56 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/.94 to 0/2.50

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 10

03/30/2007 12:56 PM

URBEMIS 2002 For Windows 8. 7. 0

File Name: C: \Program Files\URBEMIS 2002 Version 8. 7\Projects2k2\Tahoe_Vista_Phase1_B. urb

Project Name: Project Location: Tahoe Vista-Phase 1B

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

Construction Start Month and Year: June, 2007 Construction Duration: 10 Total Land Use Area to be Developed: 2.5 acres Maximum Acreage Disturbed Per Day: 0.6 acres Single Family Units: 0 Multi-Family Units: 15 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (tons/year)

CONSTRUCTION EMISSION ESTIMATE	23 UNIVIL 11 G	AIED (LOIIS	/ year)		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2007***	wa	11021	00	502	TOTAL	Limitosi	Desi
Phase 1 - Demolition Emissions	3						
Fugitive Dust	_	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading Emissic	ons						
Fugitive Dust	-	-	-	-	0.00	<u>-</u>	0. 00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dhaga 2 Puilding Construction	. n						
Phase 3 - Building Construction Bldg Const Off-Road Diesel	0. 40	2. 91	3. 04		0. 12	0. 12	0.00
				0.00			
Bldg Const Worker Trips	0. 01	0. 02	0. 17	0. 00	0. 00	0. 00	0. 00
Arch Coatings Off-Gas	0. 00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0. 00	0.00	0.00	0. 00	0. 00	0. 00
Page 6							

A 1 1, 000 C		hoeVista_P	hase1B.txt				
Asphalt Off-Gas Asphalt Off-Road Diesel	0. 00 0. 00	0. 00	0. 00	-	0. 00	0. 00	0. 00
Asphalt On-Road Diesel	0. 00	0. 00	0. 00	0.00	0. 00	0.00	0.00
Asphalt Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Total tons/year '	0. 41	2. 93	3. 21	0.00	0. 12	0. 12	0.00
Total all phases tons/yr	0. 41	2. 93	3. 21	0. 00	0. 12	0. 12	0. 00
Total all phases tons/yl	0. 41	۵. 33	5. 21	0.00	0. 12	0. 12	0. 00
*** 2008***							
Phase 1 - Demolition Emissions							
Fugitive Dust	_	-	_	_	0.00	-	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road_Di esel	0. 00	0. 00	0.00	0. 00	0. 00	0.00	0.00
Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Total tons/year	0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Phase 2 - Site Grading Emission	S						
Fugitive Dust	-	-	_	-	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0. 00	0. 00	0.00	0. 00	0. 00	0. 00	0.00
Phase 3 - Building Construction	1						
Bldg Const Off-Road Diesel	0. 17	1. 19	1. 34	-	0. 05	0. 05	0.00
Bldg Const Worker Trips	0.00	0. 01	0. 08	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0. 02	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0. 00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0. 03	0. 17	0. 25	-	0. 01	0. 01	0.00
Asphalt On-Road Diesel	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Asphalt Worker Trips	0.00	0. 00	0.00	0. 00	0. 00	0. 00	0.00
Total tons/year	0. 22	1. 37	1. 67	0. 00	0. 06	0. 06	0.00
Total all phases tons/yr	0. 22	1. 37	1. 67	0. 00	0. 06	0. 06	0.00

Page: 11

03/30/2007 12:56 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Jun '07 Phase 3 Duration: 10 months Start Month/Year for SubPhase Building: Jun '07 SubPhase Building Duration: 10 months Off-Road Equipment Type No. Horsepower Load Factor Hours/Day Concrete/Industrial saws 84 0.730 10. 5 1 Other Equipment 190 0.0
1 Rough Terrain Forklifts 94 0.4
Start Month/Year for SubPhase Architectural Coatings: Mar '08
SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Mar '08
SubPhase Asphalt Duration: 0.5 months 0.620 10.5 0.475 10.5 Acres to be Paved: 0.2 Off-Road Equipment Type Load Factor Hours/Day No. Horsepower 1 Graders $17\overline{4}$ 0.575 10. 5 132 1 Pavers 0.590 10. 5 1 Rollers 114 0.430 10.5

TahoeVista_Phase1B.txt

Page: 12 03/30/2007 12:56 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/.94 to 0/2.50

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 1 03/30/2007 12:40 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase2. urb

Project Name:

Tahoe Vista-Phase 2
Project Location:

Mountain Counties and Rural Countie Mountain Counties and Rural Counties

SUMMARY REPORT (Pounds/Day - Summer)

CONSTRUCTION EMISSION ESTIMATES

				PM10	PM10
ROG	NOx	CO	S02	TOTAL	EXHAUST
8. 15	56. 34	67. 23	0. 00	2. 33	2. 31
				PM10	PM10
DOC	MOsz	CO	503	тотлі	EXHAUST
ROG	NUX	CO	302	IUIAL	EMIAUSI
19. 05	85. 02	114. 69	0.00	3. 12	3. 07
	8. 15 ROG	8. 15 56. 34 ROG NOx	8. 15 56. 34 67. 23 ROG NOx CO	8. 15 56. 34 67. 23 0. 00 ROG NOx CO SO2	ROG NOx CO SO2 TOTAL 8. 15 56. 34 67. 23 0. 00 2. 33 PM10 ROG NOx CO SO2 TOTAL

Page: 2 03/30/2007 12:40 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version 8.7\Projects2k2\Tahoe_Vista_Phase2.urb
Project Name: Tahoe Vista-Phase 2
Project Location: Mountain Counties and Rural Counties

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

CONSTRUCTION EMISSION ESTIMATES

CONSTRUCTION EMISSION ESTIMATES	,				PM10	PM10
PM10 *** 2008 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (1 bs/day, unmitigated) 0.02	8. 15	56. 34	67. 23	0. 00	2. 33	2. 31
PM10					PM10	PM10
*** 2009 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (1 bs/day, unmitigated) 0.05	19. 05	85. 02	114. 69	0. 00	3. 12	3. 07

Page: 3 03/30/2007 12:40 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase2. urb
Proj ect Name: Tahoe V
Proj ect Location: Mountai Tahoe Vista-Phase 2

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

CONSTRUCTION EMISSION ESTIMAT	ES				DM10	DM10	DM10
*** 2008 ***	ROG	NOx	CO	S02	PM10 TOTAL	PM10 EXHAUST	PM10 DUST
TOTALS (tpy, unmitigated)	0. 36	2. 48	2. 94	0.00	0. 10	0. 10	0.00
	D 0.0	110	G 0	G0.0	PM10	PM10	PM10
*** 2009 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
TOTALS (tpy, unmitigated)	0. 63	3. 71	4. 81	0. 00	0. 14	0. 14	0. 00

Page: 4

03/30/2007 12:40 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version
8.7\Projects2k2\Tahoe_Vista_Phase2.urb
Project Name:
Tahoe Vista-Phase 2
Project Location:
On-Road Motor Vista

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Winter)

Construction Start Month and Year: September, 2008

Construction Duration: 10
Total Land Use Area to be Developed: 1.5 acres
Maximum Acreage Disturbed Per Day: 0.4 acres
Single Family Units: 0 Multi-Family Units: 40

Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		`	<i>3</i> ,		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2008***							
Phase 1 - Demolition Emissio	ns						
Fugitive Dust	=-	-	-	-	0.00	-	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1bs/day	0. 00	0. 00	0. 00	0. 00	0.00	0. 00	0.00
Phase 2 - Site Grading Emiss	i ons						
Fugitive Dust	-	_	-	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00

		TahoeVista_	Phase2A.tx	t			
Worker Trips Maximum lbs/day	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel	7. 90	55. 84	61. 45	_	2. 29	2. 29	0. 00
Bldg Const Worker Trips Arch Coatings Off-Gas	0. 25 0. 00	0. 50	5. 79	0.00	0. 03	0. 01	0. 02
Arch Coatings Worker Trips Asphalt Off-Gas	0. 00 0. 00 0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Asphalt Off-Road Diesel	0.00	0. 00	0. 00	-	0.00	0. 00	0. 00
Asphalt On-Road Diesel Asphalt Worker Trips Maximum lbs/day	0. 00 0. 00 8. 15	0. 00 0. 00 56. 34	0. 00 0. 00 67. 23	0. 00 0. 00 0. 00	0. 00 0. 00 2. 33	0. 00 0. 00 2. 31	0. 00 0. 00 0. 02
Max lbs/day all phases	8. 15	56. 34	67. 23	0. 00	2. 33	2. 31	0. 02
*** 2009***							
Phase 1 - Demolition Emissions Fugitive Dust	_	_	_	_	0. 00	_	0. 00
Off-Road Diesel On-Road Diesel	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1 bs/day	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Phase 2 - Site Grading Emission Fugitive Dust	S -	_	_	_	0. 00	_	0. 00
Off-Road Diesel On-Road Diesel	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1 bs/day	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel	7. 90	53. 23	63. 37	_	2. 16	2. 16	0. 00
Bldg Const Worker Trips Arch Coatings Off-Gas	0. 24 5. 42	0. 50	5. 71	0. 00	0. 03	0. 01	0. 02
Arch Coatings Worker Trips	0.07	0. 04	0.82	0.00	0. 02	0.00	0. 02
Asphalt Off-Gas Asphalt Off-Road Diesel	0. 12 5. 25	30. 70	44. 62	-	0. 89	0. 89	0. 00
Asphalt On-Road Diesel Asphalt Worker Trips	0. 03 0. 02	0. 55 0. 01	0. 11 0. 23	0. 00 0. 00	0. 01 0. 01	0. 01 0. 00	0. 00 0. 01
Maxi mum lbs/day	19. 05	85. 02	114. 69	0. 00	3. 12	3. 07	0. 05
Max lbs/day all phases	19. 05	85. 02	114. 69	0.00	3. 12	3. 07	0. 05

Page: 5 03/30/2007 12:40 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Sep '08 Phase 3 Duration: 10 months Start Month/Year for SubPhase Building: Sep '08

SubPhase Building Duration: 10 months Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
2	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5
~ .				

Start Month/Year for SubPhase Architectural Coatings: Jun '09 SubPhase Architectural Coatings Duration: 1 months Start Month/Year for SubPhase Asphalt: Jun '09

Page 3

TahoeVi sta_Phase2A. txt

SubPhase Asphalt Duration: 0.5 months

Acres to be Paved: 0.5

Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Graders	174	0. 575	10. 5
1	Pavers	132	0. 590	10. 5
1	Rollers	114	0. 430	10. 5

Page: 6

03/30/2007 12:40 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/2.5 to 0/1.5

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 7

03/30/2007 12:40 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase2. urb

Tahoe Vista-Phase 2 Project Name:

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: September, 2008

Construction Duration: 10

Total Land Use Area to be Developed: 1.5 acres Maximum Acreage Disturbed Per Day: 0.4 acres Single Family Units: 0 Multi-Family Units: 40

Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		<i>J</i> ,		PM10	PM10	PM10
ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
;						
_	-	-	_	0.00	_	0.00
0.00	0.00	0.00	_	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0. 00	0.00	0.00	0.00	0. 00	0.00
ns						
-	-	-	_	0.00	_	0.00
0.00	0.00	0.00	-	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00	0. 00	0. 00	0. 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ROG NOX CO SO2 TOTAL EXHAUST 0.00 0.00 0.00 0.00 0.00 0.00

Phase 3 - Building Construction

		TahoeVista_	Phase2A.tx	t			
Bldg Const Off-Road Diesel	7. 90	55. 84	61. 45	-	2. 29	2. 29	0.00
Bldg Const Worker Trips	0. 25	0. 50	5. 79	0.00	0.03	0. 01	0.02
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	8. 15	56. 34	67. 23	0. 00	2. 33	2. 31	0. 02
Max lbs/day all phases	8. 15	56. 34	67. 23	0.00	2. 33	2. 31	0. 02
*** 2009***							
Phase 1 - Demolition Emissions							
Fugitive Dust					0. 00		0.00
Off-Road Diesel	0. 00	0. 00	0. 00	-	0. 00	0. 00	0.00
On-Road Diesel	0. 00	0.00	0. 00	0.00	0. 00	0. 00	0.00
Worker Trips	0. 00	0.00	0. 00	0. 00	0. 00	0. 00	0.00
Maxi mum lbs/day	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
maxi mam 1857 day	0. 00	0.00	0.00	0.00	0. 00	0.00	0.00
Phase 2 - Site Grading Emission	s						
Fugitive Dust	-	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1 bs/day	0.00	0. 00	0. 00	0. 00	0.00	0. 00	0.00
Phase 3 - Building Construction							
Bldg Const Off-Road Diesel	7. 90	53. 23	63. 37	_	2. 16	2. 16	0.00
Bldg Const Worker Trips	0. 24	0. 50	5. 71	0.00	0. 03	0. 01	0. 02
Arch Coatings Off-Gas	5. 42	_	_	-	_	_	_
Arch Coatings Worker Trips	0.07	0.04	0.82	0.00	0. 02	0.00	0.02
Asphalt Off-Gas	0. 12	-	-	-	_	_	-
Asphalt Off-Road Diesel	5. 25	30. 70	44. 62	-	0.89	0.89	0.00
Asphalt On-Road Diesel	0.03	0. 55	0. 11	0.00	0. 01	0. 01	0.00
Asphalt Worker Trips	0.02	0. 01	0. 23	0.00	0. 01	0.00	0. 01
Maxi mum lbs/day	19. 05	85. 02	114. 69	0. 00	3. 12	3. 07	0.05
Max lbs/day all phases	19. 05	85. 02	114. 69	0.00	3. 12	3. 07	0. 05

Page: 8 03/30/2007 12:40 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Sep '08 Phase 3 Duration: 10 months

Start Month/Year for SubPhase Building: Sep '08 SubPhase Building Duration: 10 months Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
2	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5

Start Month/Year for SubPhase Architectural Coatings: Jun '09 SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Jun '09
SubPhase Asphalt Duration: 0.5 months
Acres to be Paved: 0.5
Off-Road Equipment
No. Type
Horsepower Load Load Factor Hours/Day

Page 5

TahoeVista Phase2A.txt

1	Graders	174	0. 575	10. 5
1	Pavers	132	0. 590	10. 5
1	Rollers	114	0. 430	10. 5

Page: 9

03/30/2007 12:40 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/2.5 to 0/1.5

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 10

03/30/2007 12:40 PM

URBEMIS 2002 For Windows 8. 7. 0

File Name: C: $\Program\ Files\URBEMIS\ 2002\ Version\ 8.7\Projects2k2\Tahoe_Vista_Phase2.\ urb$

Project Name: Project Location: Tahoe Vista-Phase 2

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

Construction Start Month and Year: September, 2008 Construction Duration: 10 Total Land Use Area to be Developed: 1.5 acres Maximum Acreage Disturbed Per Day: 0.4 acres Single Family Units: 0 Multi-Family Units: 40 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (tons/year)

			•		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2008***							
Phase 1 - Demolition Emission	S						
Fugitive Dust	_	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0. 00	0. 00	0. 00	0. 00	0.00	0.00	0.00
Phase 2 - Site Grading Emissi	ons						
Fugitive Dust	_	_	_	-	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0. 00	0. 00	0. 00	0.00	0.00	0. 00	0.00
Phase 3 - Building Constructi	on						
Bldg Const Off-Road Diesel	0. 35	2. 46	2. 70	_	0. 10	0. 10	0.00
Bldg Const Worker Trips	0.01	0.02	0. 24	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	_	_	-	_	_	_
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Dog	0.6				

D1 64 0

		TahoeVista_P	hase2A.tx	ĸt			
Asphalt Off-Gas	0.00	-	_	-	_	_	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0.36	2. 48	2. 94	0.00	0. 10	0. 10	0.00
J							
Total all phases tons/yr	0.36	2. 48	2.94	0.00	0. 10	0. 10	0.00
1							
*** 2009***							
Phase 1 - Demolition Emissions							
Fugitive Dust		<u>-</u>		-	0.00	<u>-</u>	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0. 00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading Emission	S				0.00		
Fugitive Dust	-	-	-	-	0. 00	-	0.00
Off-Road Di esel	0.00	0. 00	0. 00	-	0. 00	0. 00	0.00
On-Road_Diesel	0.00	0. 00	0. 00	0.00	0. 00	0.00	0.00
Worker Trips	0.00	0. 00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0.00	0. 00	0.00	0.00	0.00	0.00	0. 00
Phase 3 - Building Construction	1						
Bldg Const Off-Road Diesel	0. 52	3. 51	4. 18		0. 14	0. 14	0.00
Bldg Const Worker Trips	0.02	0. 03	0. 37	0. 00	0. 14	0. 14	0.00
	0.02	0. 03	0.37	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	0. 00	0. 01	0. 00	0. 00	0. 00	0. 00
Arch Coatings Worker Trips	0. 00	0. 00	0. 01	0.00	0.00	0.00	0. 00
Asphalt Off-Gas		0 17	0.25	-	0.00	0.00	0 00
Asphalt Off-Road Diesel	0.03	0. 17	0. 25	-	0. 00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0. 00	0. 00	0. 00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0. 00	0. 00	0. 00	0.00	0.00
Total tons/year	0. 63	3. 71	4. 81	0. 00	0. 14	0. 14	0.00
Total all phases tons/yr	0. 63	3. 71	4. 81	0. 00	0. 14	0. 14	0.00
rotar arr phases constyr	3. 00	0 1	1. 01	0.00	0.11	0.11	0.00

Page: 11

03/30/2007 12:40 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Sep '08 Phase 3 Duration: 10 months Start Month/Year for SubPhase Building: Sep '08 SubPhase Building Duration: 10 months Off-Road Equipment Type No. Horsepower Load Factor Hours/Day Concrete/Industrial saws 84 0.730 10. 5 2 Other Equipment 190 0.0
1 Rough Terrain Forklifts 94 0.4
Start Month/Year for SubPhase Architectural Coatings: Jun '09
SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Jun '09
SubPhase Asphalt Duration: 0.5 months 0.620 10.5 0.475 10.5 Acres to be Paved: 0.5 Off-Road Equipment Type Load Factor Hours/Day No. Horsepower 1 Graders $17\overline{4}$ 0.575 10. 5 132 1 Pavers 0.590 10. 5 1 Rollers 114 0.430 10.5

TahoeVista_Phase2A.txt

Page: 12 03/30/2007 12:40 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/2.5 to 0/1.5

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 1 03/30/2007 12:57 PM

URBEMIS 2002 For Windows 8. 7. 0

File Name: C:\Program Files\URBEMIS 2002 Version 8.7\Projects2k2\Tahoe_Vista_Phase2B.urb

CONSTRUCTION EMISSION ESTIMATES

Project Name:

Tahoe Vista-Phase 2B

Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2 Mountain Counties and Rural Counties

SUMMARY REPORT (Pounds/Day - Summer)

PM10					PM10	PM10
*** 2008 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (lbs/day, unmitigated) 0.02	5. 39	36. 49	45. 47	0. 00	1. 48	1. 46

DM1 O					PM10	PM10
PM10 *** 2009 ***	ROG	NOx	CO	S02	TOTAL	EXHAUST
DUST TOTALS (1 bs/day, unmitigated) 0.05	15. 44	66. 09	92. 05	0.00	2. 33	2. 28

Page: 2 03/30/2007 12:57 PM

URBEMIS 2002 For Windows 8. 7. 0

C:\Program Files\URBEMIS 2002 Version 8.7\Projects2k2\Tahoe_Vista_Phase2B.urb
Project Name:
Tahoe Vista-Phase 2B
Project Location:
On-Road Metan Vista

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

CONSTRUCTION EMISSION ESTIMATES

					PM10	PM10
PM10 *** 2008 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
TOTALS (1 bs/day, unmitigated) 0.02	5. 39	36. 49	45. 47	0. 00	1. 48	1. 46
					PM10	PM10
PM10	D 0 0	340	90	G00	mom . r	
*** 2009 *** DUST	ROG	NOx	CO	S02	TOTAL	EXHAUST
וטעטו						

Page: 3 03/30/2007 12:57 PM

URBEMIS 2002 For Windows 8.7.0

File Name: C:\Program Files\URBEMIS 2002 Version

Tahoe Vista-Phase 2B

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase2B. urb
Proj ect Name: Tahoe Vi
Proj ect Location: Mountain Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

CONSTRUCTION EMISSION ESTIMATES

*** 2008 *** TOTALS (tpy, unmitigated)	ROG 0. 24	N0x 1. 61	C0 1. 99	S02 0. 00	PM10 TOTAL 0.06	PM10 EXHAUST 0.06	PM10 DUST 0. 00
*** 2009 *** TOTALS (tpy, unmitigated)	ROG 0. 43	N0x 2. 48	C0 3. 33	S02 0. 00	PM10 TOTAL 0.09	PM10 EXHAUST 0.09	PM10 DUST 0. 00

Page: 4

03/30/2007 12:57 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version
8.7\Projects2k2\Tahoe_Vista_Phase2B. urb
Project Name:
Tahoe Vista-Phase 2B
Project Location:
On-Road Motor Vista

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Winter)

Construction Start Month and Year: September, 2008

Construction Start Month and Tear. September, 2008
Construction Duration: 10
Total Land Use Area to be Developed: 1.22 acres
Maximum Acreage Disturbed Per Day: 0.3 acres
Single Family Units: 0 Multi-Family Units: 34
Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		`	<i>3</i> ,		PM10	PM10	PM10
Source	ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
*** 2008***							
Phase 1 - Demolition Emissio	ns						
Fugitive Dust	-	-	-	-	0.00	-	0.00
Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum 1bs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading Emiss	i ons						
Fugitive Dust	-	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	_	0. 00	0.00	0. 00
On-Road Diesel	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00

Worker Trips Maximum lbs/day	0. 00 0. 00	TahoeVi st a_ 0. 00 0. 00	Phase2B. tx 0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel Bldg Const Worker Trips Arch Coatings Off-Gas Arch Coatings Worker Trips	5. 18 0. 21 0. 00 0. 00	36. 06 0. 43 0. 00	40. 55 4. 92 0. 00	0. 00 - 0. 00	1. 45 0. 03 0. 00	1. 45 0. 01 0. 00	0. 00 0. 02 - 0. 00
Asphalt Off-Gas Asphalt Off-Road Diesel Asphalt On-Road Diesel Asphalt Worker Trips Maximum lbs/day	0. 00 0. 00 0. 00 0. 00 5. 39	0. 00 0. 00 0. 00 0. 00 36. 49	0. 00 0. 00 0. 00 45. 47	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 1. 48	0. 00 0. 00 0. 00 1. 46	0. 00 0. 00 0. 00 0. 02
Max lbs/day all phases	5. 39	36. 49	45. 47	0.00	1. 48	1. 46	0. 02
*** 2009*** Phase 1 - Demolition Emissions Fugitive Dust Off-Road Diesel On-Road Diesel Worker Trips Maximum lbs/day	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00
Phase 2 - Site Grading Emission Fugitive Dust Off-Road Diesel On-Road Diesel Worker Trips Maximum 1 bs/day	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00 0. 00
Phase 3 - Building Construction Bldg Const Off-Road Diesel Bldg Const Worker Trips Arch Coatings Off-Gas Arch Coatings Worker Trips Asphalt Off-Gas Asphalt Off-Road Diesel Asphalt On-Road Diesel Asphalt Worker Trips Maximum lbs/day	5. 18 0. 20 4. 61 0. 06 0. 10 5. 25 0. 02 0. 02 15. 44	34. 49 0. 42 0. 03 30. 70 0. 44 0. 01 66. 09	41. 71 4. 85 0. 69 - 44. 62 0. 09 0. 23 92. 05	0. 00 0. 00 - 0. 00 0. 00 0. 00 0. 00	1. 37 0. 03 0. 02 0. 89 0. 01 0. 01 2. 33	1. 37 0. 01 0. 00 0. 89 0. 01 0. 00 2. 28	0. 00 0. 02 0. 02 0. 00 0. 00 0. 00 0. 01 0. 05
Max lbs/day all phases	15. 44	66. 09	92. 05	0.00	2. 33	2. 28	0. 05

Page: 5 03/30/2007 12:57 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions
Start Month/Year for Phase 3: Sep '08
Phase 3 Duration: 10 months
Start Month/Year for SubPhase Building: Sep '08
SubPhase Building Duration: 10 months
Off-Road Equipment
No. Type

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
1	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5
~ · · ·	r 1 777 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1	1.00	

Start Month/Year for SubPhase Architectural Coatings: Jun '09 SubPhase Architectural Coatings Duration: 1 months Start Month/Year for SubPhase Asphalt: Jun '09

TahoeVi sta_Phase2B. txt

SubPhase Asphalt Duration: 0.5 months

Acres to be Paved: 0.4

Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Graders	174	0. 575	10. 5
1	Pavers	132	0. 590	10. 5
1	Rollers	114	0. 430	10. 5

Page: 6

03/30/2007 12:57 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/2.13 to 0/1.22

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 7

03/30/2007 12:57 PM

URBEMIS 2002 For Windows 8.7.0

C:\Program Files\URBEMIS 2002 Version File Name:

8. 7\Proj ects2k2\Tahoe_Vi sta_Phase2B. urb

Tahoe Vista-Phase 2B Project Name:

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: September, 2008

Construction Duration: 10

Total Land Use Area to be Developed: 1.22 acres Maximum Acreage Disturbed Per Day: 0.3 acres Single Family Units: 0 Multi-Family Units: 34

Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (1bs/day)

		<i>J</i> ,		PM10	PM10	PM10
ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
_	-	_	_	0.00	_	0.00
0.00	0.00	0.00	-	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0. 00	0.00	0. 00	0.00	0. 00	0.00
ns						
-	_	_	-	0.00	_	0.00
0.00	0.00	0.00	-	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00	0. 00	0. 00	0. 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ROG NOX CO SO2 TOTAL EXHAUST 0.00 0.00 0.00 0.00 0.00 0.00

Phase 3 - Building Construction

		TahoeVista_	Phase2B. tx	t			
Bldg Const Off-Road Diesel	5. 18	36. 06	40. 55		1. 45	1.45	0.00
Bldg Const Worker Trips	0. 21	0. 43	4. 92	0.00	0. 03	0. 01	0. 02
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0. 00	0.00	0. 00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	- 00
Asphalt Off-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Un-Road Diesel	0. 00 0. 00						
Asphalt Worker Trips Maximum lbs/day	5. 39	36. 49	45. 47	0. 00	1. 48	1. 46	0.00
waxi iiuiii 1 bS/ day	5. 59	30. 49	45. 47	0.00	1. 40	1. 40	0.02
Max lbs/day all phases	5. 39	36. 49	45. 47	0.00	1. 48	1. 46	0. 02
*** 2009***							
Phase 1 - Demolition Emissions					0.00		0.00
Fugitive Dust	0 00	0.00	0 00	-	0.00	0.00	0.00
Off-Road Diesel	0. 00 0. 00	0. 00 0. 00	0. 00 0. 00	0. 00	0. 00 0. 00	0.00	0. 00 0. 00
On-Road Diesel Worker Trips	0.00	0. 00	0. 00	0. 00	0.00	0. 00 0. 00	0.00
Maxi mum 1 bs/day	0. 00	0. 00	0. 00	0. 00	0. 00	0.00	0.00
waxi mani 1 b3/ day	0. 00	0. 00	0.00	0. 00	0. 00	0. 00	0. 00
Phase 2 - Site Grading Emission	าร						
Fugitive Dust	_	-	-	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00		0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maxi mum 1bs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 3 - Building Construction	1						
Bl dg Const Off-Road Di esel	5. 18	34. 49	41.71	_	1. 37	1. 37	0.00
Bldg Const Worker Trips	0. 20	0. 42	4. 85	0.00	0. 03	0. 01	0. 02
Arch Coatings Off-Gas	4. 61	-	-	-	-	-	-
Arch Coatings Worker Trips	0.06	0. 03	0. 69	0.00	0.02	0.00	0.02
Asphalt Off-Gas	0. 10	-	-	-	_	_	-
Asphalt Off-Road Diesel	5. 25	30. 70	44. 62		0.89	0.89	0.00
Asphalt On-Road Diesel	0.02	0. 44	0. 09	0.00	0. 01	0. 01	0.00
Asphalt Worker Trips	0. 02	0. 01	0. 23	0. 00	0. 01	0. 00	0. 01
Maximum lbs/day	15. 44	66. 09	92. 05	0. 00	2. 33	2. 28	0.05
Max lbs/day all phases	15. 44	66. 09	92. 05	0.00	2. 33	2. 28	0.05
max 105/day all phases	15. 44	00.03	J2. 03	0. 00	۵. 55	۵. ۵٥	0. 03

Page: 8 03/30/2007 12:57 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Sep '08 Phase 3 Duration: 10 months

Start Month/Year for SubPhase Building: Sep '08 SubPhase Building Duration: 10 months Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Concrete/Industrial saws	84	0. 730	10. 5
1	Other Equipment	190	0. 620	10. 5
1	Rough Terrain Forklifts	94	0. 475	10. 5

Start Month/Year for SubPhase Architectural Coatings: Jun '09
SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Jun '09
SubPhase Asphalt Duration: 0.5 months
Acres to be Paved: 0.4
Off-Road Equipment
No. Type Horsepower Load Load Factor Hours/Day

Page 5

TahoeVista Phase2B.txt

1	Graders	$\overline{174}$	0. 575	10. 5
1	Pavers	132	0. 590	10. 5
1	Rollers	114	0. 430	10. 5

Page: 9

03/30/2007 12:57 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/2.13 to 0/1.22

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013

Page: 10

03/30/2007 12:57 PM

URBEMIS 2002 For Windows 8. 7. 0

File Name: C: \Program Files\URBEMIS 2002 Version 8. 7\Projects2k2\Tahoe_Vista_Phase2B. urb

Project Name: Project Location: Tahoe Vista-Phase 2B

Project Location: Mountain Counties and Rural Counties On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

Construction Start Month and Year: September, 2008 Construction Duration: 10
Total Land Use Area to be Developed: 1.22 acres
Maximum Acreage Disturbed Per Day: 0.3 acres
Single Family Units: 0 Multi-Family Units: 34
Patrick Office (Institutional (Institutional Constructional Constructional Constructional Constructional Constructional Construction

Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (tons/year)

0111111111	TILD (COID	, year,		PM1 ()	PM1 ()	PM10
ROG	NOx	CO	S02	TOTAL	EXHAUST	DUST
-	-	-	-	0.00	-	0.00
0.00	0.00	0.00	-	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
ıs				0.00		0.00
	_ -	<u>-</u>	-			0. 00
	0. 00	0.00	-	0. 00	0. 00	0. 00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
n						
0 22	1 50	1 70		0.06	0.06	0.00
			0.00			
	0. 02	0. 21	0.00	0. 00	0. 00	0.00
0.00	-	-	-	-	=	-
0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
	ROG 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00	ROG NOx	0. 00	ROG NOx CO SO2	ROG NOX CO SO2 TOTAL 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00	ROG NOX CO SO2 TOTAL EXHAUST 0.00 0.00 0.00 0.00 0.00

Applied to OCC Con		noeVi sta_Pł	nase2B. txt				
Asphalt Off-Gas Asphalt Off-Road Diesel	0. 00 0. 00	0. 00	0. 00	-	0. 00	0. 00	0. 00
Asphalt On-Road Diesel	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Asphalt Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Total tons/year	0. 24	1. 61	1. 99	0. 00	0. 06	0. 06	0. 00
Jan							
Total all phases tons/yr	0. 24	1. 61	1. 99	0.00	0.06	0.06	0.00
*** 2009***							
Phase 1 - Demolition Emissions							
Fugitive Dust	_	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	-	0. 00	0.00	0. 00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons/year	0. 00	0.00	0.00	0.00	0.00	0. 00	0.00
Dhaga Q Cita Chading Emigaian	-						
Phase 2 - Site Grading Emission Fugitive Dust	S				0. 00		0.00
Off-Road Diesel	0. 00	0. 00	0. 00	-	0. 00	0. 00	0.00
On-Road Diesel	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Total tons/year	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Phase 3 - Building Construction							
Bldg Const Off-Road Diesel	0. 34	2. 28	2. 75	_	0. 09	0. 09	0.00
Bldg Const Worker Trips	0. 01	0. 03	0. 32	0.00	0. 00	0. 00	0. 00
Arch Coatings Off-Gas	0. 05	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0. 01	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0. 03	0. 17	0. 25	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0. 00	0.00	0.00	0.00	0. 00	0. 00	0.00
Asphalt Worker Trips	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00
Total tons/year	0. 43	2. 48	3. 33	0. 00	0. 09	0. 09	0.00
Total all phases tons/yr	0. 43	2. 48	3. 33	0. 00	0. 09	0. 09	0. 00

Page: 11

1

Rollers

03/30/2007 12:57 PM

Phase 2 - Site Grading Assumptions: Phase Turned OFF

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Sep '08 Phase 3 Duration: 10 months Start Month/Year for SubPhase Building: Sep '08 SubPhase Building Duration: 10 months Off-Road Equipment Type No. Horsepower Load Factor Hours/Day Concrete/Industrial saws 84 0.730 10. 5 1 Other Equipment 190 0.0
1 Rough Terrain Forklifts 94 0.4
Start Month/Year for SubPhase Architectural Coatings: Jun '09
SubPhase Architectural Coatings Duration: 1 months
Start Month/Year for SubPhase Asphalt: Jun '09
SubPhase Asphalt Duration: 0.5 months 0.620 10.5 0.475 10.5 Acres to be Paved: 0.4 Off-Road Equipment Type Load Factor Hours/Day No. Horsepower 1 Graders $17\overline{4}$ 0.575 10. 5 132 1 Pavers 0.590 10. 5

114

0.430

10.5

TahoeVista_Phase2B.txt

Page: 12 03/30/2007 12:57 PM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Apartments low rise have changed from the defaults 6.9/2.13 to 0/1.22

Changes made to the default values for Construction

Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0013 Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0013